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Abstract. Mechanically understanding transformer models might be an important tool for
evaluating the behavior of current Large Language Models. In this report, we investigate a trans-
former trained on the task of sorting. Sparsity was introduced through an L1-penalty, the effective-
ness of which was measured using the Local Learning Coefficient. Through the use of benchmarks,
activation patching, logit reconstruction, and visualization of attention, we find that the model
performs most of the sorting in the first layer, while the other layers act to refine the outputs of
the first layer. The results of this study demonstrate how benchmarks and logit reconstruction can
provide insights into the process of generating outputs.

All code can be found on this Repository.
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2 BACKGROUND

1 Introduction

Transformer models have demonstrated remarkable success in various natural language processing
tasks. With this success come many concerns about safety and societal implications. Models are
often ’fine-tuned’ to not fulfill certain requests deemed to be unsafe or unethical. This fine-tuning
often results in models that look safe but can be made to fulfill these requests through specific
prompts.

Transformers are typically optimized to maximize a proxy reward signal meant to approximate
some desired high-level behavior. Yet an inherent gap exists between this proxy objective and the
true intended goals envisioned by the human developers. This leads to the problem of “reward
hacking” [3] - where models become incentivized to maximize the specified objective in a narrow
and potentially misaligned way, neglecting other important factors comprising the intended over-
all utility. While substantial work aims to better formulate objectives matching human values,
a complementary approach is understanding how models behave when trained on imperfect or
misspecified objectives. Such insights could help validate whether a model is indeed optimized for
its intended purpose, even when assuming the original objective was well-designed.

The investigation of a neural network’s inner workings is called mechanistic interpretability.
This work tries to find ways in which models perform the tasks they are trained on, usually
through visual exploration, activation patching, which, in some cases, leads to a mathematical
description of the algorithms performed by the model [9].

2 Background

2.1 Superposition

Many models can represent far more ’features’ than they have individual neurons. A feature
can generally be thought of as an abstract pattern, and depending on the location in the neural
network, this might represent something fundamental, like a horizontal edge for a vision model
or the sentiment of a sentence for a language model. One proposed mechanism by which models
can accomplish this cramming of features is the theory of Superposition [1]. This theory supposes
that although there might be many more features than the model has parameters, the inputs to
these models are sparse, meaning an input contains far fewer features than the total dataset. This
allows the model to shift from orthogonal storing of the features to “quasi” orthogonal storing of
the features. In the former, each feature activates a particular pattern of neurons that is not shared
with any other feature, while in the second, some features might share a pattern. Still, given that
they rarely co-occur, the model can ascribe different meanings to the pattern based on the context
received from other features in the input. Here, contexts refer to the other features in the input
space.

This superposition poses an additional challenge when investigating the inner workings of these
models. When a model is in superposition, it is not sufficient to understand what circuits activate
when a feature is present; the interaction between a feature and its context adds another layer of
complexity. In this paper, we will consider two methods of mitigating superposition.

Motivated by the benefits of mechanistic transparency, our work aims to shed light on the inner
workings of transformer models trained for the fundamental algorithmic task of sequence sorting.
We explore two complementary approaches for this objective. Firstly, using the Tracr library
[5] to construct interpretable “idealized” transformers with known sorting mechanisms specified
directly through a programming language. Secondly, applying sparsity-inducing regularization to
encourage simpler computation paths when training standard transformer models for sorting.

Through analysis and comparison of these constructed and trained sorting models, we aim
to develop a clearer understanding of the algorithms and processes involved in this foundational
task. While sorting itself has well-known traditional solutions, dissecting how transformers learn to
approach this problem can yield valuable insights and serve as a stepping stone toward interpreting
more complex model behaviors. Ultimately, such mechanistic transparency will be crucial for
ensuring the safety and trustworthiness of these powerful language models as their capabilities
continue growing.
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2 BACKGROUND

2.1.1 Tracr

Tracr [5] is a library developed by Google DeepMind. This library allows for direct specification
of the behavior of a model through the Rasp (Restricted Access Sequence Processing Language)
programming language [8]. Rasp defines the fundamental operations transformers can perform,
not limited to toy models. These operations are performed on entire sequences and are functional;
this means that transformers can only perform operations on the entire input space and cannot
make in-place changes to the sequences they operate on. The language consists of two types
of variables and three types of instructions. Sequence operations and selectors are the variables
available; Sequence operations can be seen as a function f : Rn × Rn → Rn×n. Selectors result
from the Select operation performed on two sequences; selectors are matrices of all pairwise
comparisons performed on two input sequences. The selector can be reduced back to a sequence
using the Aggregate function, which can take in a matrix and a sequence operation and return a
new sequence operation. Finally, the selector width function takes in a sequence and generates
a sequence of the same length, with the count for each token at each position.

Using Rasp, Tracr can construct models with orthogonal activations, meaning each feature on
the input space has a unique activation pattern. The models produced by Tracr are idealized
Transformers, which are straightforward to interpret. Another benefit of these models is the fact
that they allow for a proof of concept, meaning that given a particular task, if a set of Rasp
instructions can be formulated for Tracr to generate a model with, we can know this task can be
performed on a model of the same size, without making use of superposition.

2.1.2 Sparsity

We looked into regularization as a method for encouraging sparsity. One method of regularization
is L1-regularization, defined as

E = ℓ(w) + λ
∑
i

|wi|. (1)

ℓ is the model’s loss function and wi is the model’s weight. Through L1-regularization, the
model is incentivized to keep the absolute value of the parameters low, with the goal of only
necessary parameters getting a non-zero value. L1-regularization only applies to the weights in the
network; in the case of a regular neural network, this might result in cleaner activations, but in
the case of transformers, the residual stream accumulates activations after each attention or MLP
block. The penalty term is modified to incentivize the model to keep the residual stream sparse.

E = ℓ(w) + λ
∑
i

|αpost
i |. (2)

This results in a loss term with a penalty for all values in the residual stream after each layer.

2.2 Complexity

In this context, sparsity is a proxy for the goal of having a simpler model that takes steps that are
easier for human evaluators to understand. Many metrics attempt to explain a model’s complexity,
including the Local Learning Coefficient (LLC) [4]. This is a local approximation of the learning
coefficient. The Learning Coefficient is a theoretical measure of model complexity; however, it is
computationally infeasible. The main idea behind LLC is that most models are singular, meaning
that given a local minimum, changes to the parameters in small amounts do not lead to a change
in the loss of the model. Hoogland et al. [2] have used this complexity estimate to investigate the
development of a model throughout its training, arguing that inflection points in the derivative of
the LLC correspond to phase transitions in the model.

2.3 Algorithmic Tasks

Understanding the entirety of large language models is not feasible with current knowledge and
techniques. Not only do we not have the tools and frameworks to understand the computations
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performed by these models, but in many cases, the tasks for which we train the models are not
fully understood, as is the case with, for example, large language models or protein folding.

Nanda et al. [6] have taken another approach, taking steps to understand simple models trained
on an algorithmic task. This approach is hoped to let researchers develop tools, intuition, and
knowledge on the behavior of models in simpler tasks, which can be used in investigations in more
complex models.

In this paper, we will look into sorting a sequence of integers. A Tracr model will be constructed and
analyzed as a demonstration of Rasp and to understand one approach to sorting in a transformer.
Furthermore, a model will be trained to perform the same task; regularization will make the model
activations more sparse. Model complexity and performance on benchmarks will be measured after
each epoch. Finally, an attempt will be made to understand some internal computations performed
by the model to perform the sorting task.

3 Methods

3.1 Transformer Model

The transformer model studied in this work is tasked with sorting sequences of ten unique numbers
ranging from one to ten. We use the Tracr library [5] to first construct an ”idealized” transformer
architecture with built-in sorting capabilities specified through a custom programming language
called Rasp. The configuration of this Tracr model is then copied to initialize the weights of a
standard transformer model, which is trained from scratch for the sorting task.

The Rasp program we use to define the sorting procedure is shown in Algorithm 1. It operates
by first selecting the ”smaller” elements from the input keys (token IDs) compared to themselves.
This creates a mask highlighting the minimum value. The width of this mask is then computed to
determine the target output position for the minimum value. A new mask is generated, marking
the indices where the target position equals the current position. Finally, the values (embeddings)
at these marked indices are aggregated to produce the output. In essence, this program implements
a simple selection sort by repeatedly picking out the smallest remaining element to output.

Algorithm 1 Rasp Program for Unique Sorting

Require: keys, values ▷ Token IDs and embeddings
Ensure: out ▷ Output embeddings
1: smaller ← Select(keys, keys, smaller) ▷ Get mask for min value
2: target pos← SelectorWidth(smaller) ▷ Compute target output position
3: new selection← Select(target pos, indices, equal) ▷ Get mask for target
4: out← Aggregate(new selection, values) ▷ Aggregate values at target
5: return out

The transformer consists of 3 layers, each containing an attention block followed by a multi-
layer perceptron (MLP) block. Within each attention block, there is a single attention head. The
vocabulary size is set to 12 to account for the begin-sequence and part-of-sequence tokens required
by Tracr. The dimension of the residual stream (i.e., embedding size) is 50.

Three separate instances of this 3-layer transformer are trained from scratch, each with a
different L1 weight decay coefficient of λ ∈ 0, 10−6, 10−5 to induce varying levels of sparsity, these
values were chosen to result in a loss of the same order of magnitude as the loss of a completely
untrained model. This results in the penalty not dominating the loss function. The AdamW
optimizer [7] is used with a learning rate of 10−3 for 300 epochs and a batch size 256 and the
Cross-Entropy loss function. During the training process, each element of a batch was randomly
generated. An element was defined as a sequence of 10 integers, where each integer was selected
from the set 0, 1, . . . , 9, as shown in the following equation:

(x0, . . . , x9) | xi ∈ {0, . . . , 9}. (3)
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Due to the vast number of possible sequences (1010), the model was trained on only 300× 256
inputs, which represents a small fraction of the possible sequences. As a result, there was no
meaningful separation between the training and test sets, as the trained data covered only a
limited portion of the potential input space.

4 Results

4.1 Performance Metrics

After 300 training epochs, all models achieved 100% accuracy on the sorting task for sequences of
10 unique numbers from 1 to 10. Figure 1 shows the loss curves, sorting evaluation metrics, and
logit-level logistic circuit capacity (LLC) estimates over training for the three models with different
L1 weight decays (λ ∈ {0, 10−4, 10−3}).

Figure 1: The loss, benchmarks, and LLC value for the model with three values for λ, we
can see that the model with λ = 10−4 is the least complex model according to the LLC value

The model with λ = 10−4 exhibits the lowest estimated LLC, suggesting a less complex solution.
While all models eventually satisfy all metrics, we can identify three key transition points in their
progression:

1) Around epoch 25-50, the “all ascending” metric is first satisfied, indicating the models begin
outputting sequences in ascending (though not necessarily correct) order.

2) By epoch 50, the ratio of input tokens present in the output becomes high enough to satisfy
the “contains all inputs” metric.

3) Between epochs 150 and 250, the models achieve high accuracy as the remaining metrics
level off, with a subsequent decrease in LLC.

These transition points illustrate how the models decompose the sorting task into logical steps
of first outputting ascending sequences, then representing all input tokens, before finally producing
the correct sorted output.

4.2 Sorting Mechanism Analysis

4.2.1 Tracr Compiler Visualization

To analyze how the transformer architecture implements the sorting functionality, we first inspect
the “idealized” model constructed by the Tracr compiler based on our defined Rasp sorting program
1.
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Figure 2: Final residual Layer of the Tracr model, each color represents a Rasp Operation.

Figure 3: The MLP activations in the first Layer

Figure 2 shows the final residual stream activations of this Tracr model. The outputs are
highly sparse, with different segments corresponding to each of the Rasp operations. The first
segment performs the token encoding, while the last contains the scrambled input tokens. In the
first layer’s MLP (Figure 3), a section exists for each input value to compute the select width

operation, counting its occurrences.
The second layer’s attention then calculates the indices associated with each value. Its MLP

appears to “spread out” the values according to their counts from the previous layer. Finally, the
last attention mechanism sorts the values by these indices and handles duplicates. This sparse
implementation precisely mirrors the procedural Rasp sorting routine.

4.2.2 Trained Transformer Interpretation

Analyzing the trained transformer model reveals several insightful patterns:
Attention Analysis (Figure 4): For a scrambled input, the first layer exhibits almost uni-

form attention, attending to all tokens equally. The second layer shows an alternating broad
attentional pattern, while the third layer demonstrates more concentrated attention. This pro-
gression from broad to focused attention suggests the model first encodes the global input context
before specializing to more localized token relationships in later layers.

Logit Reconstruction (Figure 6): Visualizing the ”logit reconstructions” (unembedded
residual stream activations treated as logits) shows the model’s intermediate sorting estimates. A
key observation is that the general form of the sorted logits is already established after the first
layer, with subsequent layers refining this initial estimate.

For scrambled, sorted, and reversed inputs, the reconstructions follow similar trajectories - first
exhibiting two distinct logit clusters (tokens 0-2, 5-8), which gradually merge into the diagonal
sorted form. When all tokens are identical (e.g. all 1s), we interestingly see “antithetic” logit
patterns where the model is highly confident the values are not only the correct token but also not
other tokens.

Epoch 50 Analysis (Table 1, Figure 7): Examining the model’s behavior at epoch 50
aligns with the transitions observed in the metric curves. The model outputs are partially sorted,
correctly handling simple cases like all 1s or sorted inputs. However, it struggles with more complex
reorderings like scrambled or reversed sequences. The logit reconstructions show a less refined but
qualitatively similar trajectory as the final model.
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Figure 4: The attention at all three layers for a scrambled input

Table 1: Predicted values for different token scenarios after

Original Tokens Model Output

Sort tokens [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Reverse tokens [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] [0, 2, 2, 3, 4, 5, 6, 8, 8, 9]
Only ones [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Only Nines [9, 9, 9, 9, 9, 9, 9, 9, 9, 9] [9, 9, 9, 9, 9, 9, 9, 9, 9, 9]
Scrambled tokens [8, 3, 8, 8, 6, 0, 0, 5, 9, 2] [0, 1, 2, 2, 5, 6, 7, 8, 9, 9]

4.3 Activation Patching

To probe the model’s learned representations, we perform activation patching - systematically
replacing activations from a “clean” run with activations from a corrupted run (e.g. reversed
token order) at different layers and positions. We then measure the KL divergence between the
original and patched output distributions (Figure 5).
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Figure 5: KL divergence as a result of activation patching different tokens into a ’clean’ in-
put at various layers

Patching reversed token activations into the first layer before the initial self-attention shows
high divergence for tokens 0-3 and 6-9, effectively reversing just those token positions. In contrast,
patching all 1s or all 9s into the first layer yields uniform high divergence across all tokens.

For patching at other layer positions, the divergence patterns more closely resemble the (nor-
malized) logit distributions for the respective constant inputs. This suggests the early self-attention
layers play a crucial role in establishing the basic token ordering, while later layers operate on this
coarse ordering signal.

In summary, the interpretation analysis provides insights into how the transformer model decon-
structs and solves the sorting task: establishing a coarse global context in early layers, iteratively
refining the token estimates, and ultimately converging on the correct output order - with attention
sparsity induced by L1 regularization leading to a less complex solution.

5 Discussion

Although no mathematical description of these findings can be given, multiple insights have been
gained from investigating this toy model. LLC seems to be a useful measure for model complexity;
it allows for comparison between different models on the same task and between one model at
different points of training. The benchmarks proposed for the model show that it is possible to
find specific points at which a model can perform certain actions. These benchmarks accurately
represent what kind of capabilities to expect from this model. We have also found the first attention
layer to show uncertainty about the distribution of tokens, showing uniform attention between all
tokens. This attention narrows to a diagonal band as the model progresses through its layers,
representing the decrease in uncertainty.
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6 APPENDIX

5.1 Limitations

Little can be said about the MLPs in this model, although we can see how they relate to the model
output through the logit investigation and activation patching.

The architecture of this model might also limit the generalization of these findings. Firstly, the
fact that the model’s vocabulary size and context window are roughly the same size might mean
that the model can more accurately use heuristics based on the vocabulary range. In contrast, these
heuristics might not be possible with larger vocabularies. Secondly, the use of learned positional
embeddings might enable the model to perform some sorting tasks outside the attention and
MLP blocks, which this investigation has not examined, this could be prevented by fixing the
embeddings to one-hot-encoded representations. In typical use cases, an efficient representation
of the data might be desired; in that sense, this model is more comparable to real-world models.
However, in the context of real-world (Large Language) models, many other aspects of this model
are both idealized and non-representative. When applying this work to these settings, it might be
beneficial to consider the level of understanding human evaluators have regarding the task at hand.
Evaluating a task through benchmarks is only viable when researchers have a clear understanding
of what constitutes a meaningful improvement towards the goal, as well as being able to formulate
the goal itself.

5.2 Future work

As transformers are inherently probabilistic and parallel, traditional sorting algorithms are neces-
sarily unable to capture the mechanism by which a transformer would perform a sorting operation.
One way to potentially find a well-posed framework of the mechanism by which a transformer sorts
a sequence could be through probabilistic integer sorting, as these algorithms tend to perform well
in cases where the range of inputs in known and limited. Transformers are probabilistic mod-
els that assign probabilities to different possible output sequences based on the input sequence.
This is similar to the randomization aspect employed in probabilistic integer sorting algorithms.
Transformers also operate on a finite number of discrete elements (tokens) with a fixed vocabulary
size, which is analogous to the limited and known input range that probabilistic integer sorting
algorithms excel at handling.

Benchmarks are readily available for large language models; these could be used to find de-
velopmental stages during training; this process can be combined with the LLC to find stages of
capability gains in these models. Most current benchmarks test the number of correct answers a
model achieves on a specific set of tasks. At the same time, this might be useful for estimating the
capabilities of a fully trained model. Using the right combination of benchmarks, or benchmarks
specifically crafted to show incremental improvement, might help in understanding the capabilities
of larger models.

Finally, investigating toy models is often limited to the investigation of 1 task. However, large
language models are often tasked with numerous tasks, which they can all perform to different
extents. An approach to emulate this would be to train a toy model on a set of n tasks, which
can then be to disentangled. For example, a model could be trained to do sorting, addition and
filtering depending on the input form. Even if the algorithms individually cannot be understood,
separating the circuitry for each algorithm might reveal task delegation within a model. This
process can be aided through the use of benchmarks and the LLC to find points at which specific
tasks can be performed and relate those to the model at stages at which it was not able to perform
the task.

6 Appendix

6.1 Scope

Not all that was investigated has made it into this report; two particular streams of investigations
have been omitted. Firstly, an investigation into compression was done. The model was compressed
by multiplying the inputs and outputs of the model’s intermediate representation with a lower-rank
matrix. Upon further inspection, multiplying this matrix with itself resulted in an approximation
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of an identity matrix. This approximation, however, was of poor resolution, making the model
perform worse while increasing its complexity.

Secondly, the Query Key and output Value circuits were investigated. The results were, how-
ever, difficult to interpret and present.

6.2 Figures

Figure 6: The logit reconstruction generated by unembedding the residual stream at differ-
ent points.
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Figure 7: The logit reconstruction generated for the model at checkpoint 50

6.3 Transformer Architecture Details

The transformer architecture used in this work follows the standard setup with the following
configuration:

• Number of Layers: 3

• Embedding Dimension: 50

• Feedforward Dimension: 100

• Number of Attention Heads: 1 (per layer)

• Activation: ReLU

Each layer contains a multi-head attention block followed by a position-wise feedforward net-
work. Let x ∈ Rn×d be the input to a layer, where n is the sequence length and d is the embedding
dimension.

The attention block first computes query, key, and value projections of the input:
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Q = xWQ K = xWK V = xWV

Where WQ ∈ Rd×dk , WK ∈ Rd×dk , WV ∈ Rd×dv are learnable projection matrices, and dk, dv
are the dimensions of the query/key and value vectors respectively.

The attention scores are then computed as follows:

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V

In our case, with a single head, dk = dv = 50. The attention output is then passed through a
feedforward network.

Finally, the outputs of the attention and feedforward networks are combined via a residual
connection to produce the layer’s output activations.
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