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“The majority, standing in for the people, wills everything and therefore wills nothing”

Joshua Cohen



Abstract

Deliberation is often proposed as a remedy to democratic dysfunction, enabling voters to

reach more informed and coherent preferences. In particular, deliberation may promote

a shared understanding of the relevant issue dimensions (meta-agreement), which can

lead to single-peaked preference profiles and circumvent classic impossibility results in

social choice theory. This thesis investigates whether and how deliberation fosters such

structured preferences by adapting the DeGroot model of opinion dynamics.

We begin by reviewing theoretical foundations from social choice, focusing on domain

restrictions like single-peakedness, and by discussing deliberative democracy and the

concept of meta-agreement. We then replicate some of the results of Rad and Roy,

published in the American Political Science Review in 2021, which models deliberation

as preference updating under various distance metrics. While their model can increase

proximity to single-peakedness, it does not capture meta-agreement and is vulnerable

to strategic manipulation.

To address the lack of meta-agreement, we introduce an extended DeGroot-based model

in which agents deliberate not only over their substantive preferences but also over their

beliefs about candidate positions on multiple policy dimensions. Trust dynamics are

modeled via bias, ego, similarity, and knowledge, and are used to guide how individ-

uals weight others’ opinions. Using data from the well-known AMERICA IN ONE ROOM

experiment, we calibrate and validate the model, showing it reproduces some empirical

patterns of opinion change. Notably, we find that ego-based trust better fits observed

data than knowledge-based trust, suggesting that being informed does not necessarily

translate to persuasive influence.

We further extend the model to simulate deliberation-driven meta-agreement and show

that it can reduce cyclic preferences and increase proximity to single-peakedness. Fi-

nally, a sensitivity analysis identifies drivers of opinion change and highlights the inter-

action effects between trust, bias, and group composition. These results suggest that

while deliberation can indeed structure preferences, the dynamics are more complex

and depend on voters’ understanding of the broader issue landscape.
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CHAPTER 1

INTRODUCTION

Claims such as “vaccines are deadly” and “nuclear energy is dangerous” run counter to

expert consensus, despite experts overwhelmingly vouching for both their safety and

efficacy1. Many democracies suffer this kind of misinformation, leading to a general

dissatisfaction among the electorate. Misinformation not only pushes voters to more

extreme opinions, but skews their views of fellow citizens. Elections thus face a dual

challenge: not only must they select broadly appealing candidates, but they must do

so in a context where people have drastically differing opinions on the nature of the

problems, the possible solutions and the roles of the candidates.

For democracy to function effectively, voters need a shared foundation of understanding

— a “shared reality.” This consists of commonly accepted facts and causal relationships

allowing meaningful debate about values and priorities. For example, while nuclear

energy is considered safe by experts, it comes at high initial cost, and long construction

times. Renewable sources such as solar and wind, by contrast, can be scaled up quickly

but provide less consistent energy output. When voters share this understanding, they

can engage in productive disagreement about whether the time and money investments

for nuclear are worth the consistent energy production. However, when some voters

believe nuclear to be unsafe, an election seemingly about the trade-off between nuclear

and solar becomes a referendum on the perceived safety of nuclear energy.

Traditionally, people’s understanding of the world was shaped by family, friends, and

in legacy media. These sources tend to reinforce shared viewpoints, friends and family

1While nuclear energy has seen catastrophic failures, such as the Chernobyl Disaster, evidence suggests
that, on average, it results in fewer deaths and less environmental harm than fossil fuel-based energy [33].
This nuance does not contradict the broad expert consensus supporting its relative safety.

1



Introduction 2

often consumed similar media and held similar beliefs, while newspapers and broad-

casters curated a common public narrative — even if this narrative is not entirely factu-

ally accurate. Increasingly, however, algorithmic curation shapes individual worldviews

creating a fundamental problem: a fragmented understanding of reality. Because algo-

rithms tailor content to each individual’s preferences, people are exposed to unique and

sometimes incompatible sets of claims about the world.

This fragmentation creates a problem for collective decision-making. Voters might be

supporting the same candidate for fundamentally different, and possibly opposing, rea-

sons. In this work we formalize this notion of a “reason” using the concept of the issue

dimension introduced by List [25], when people have a common issue dimension, their

disagreement over outcomes can be explained through different trade-offs along these

dimensions.

From the perspective of social choice, shared issue dimensions can be beneficial. In

particular if the problem can be reduced to a singular shared issue dimension, we might

get “single-peaked” preferences, a special structure in the preferences of voters. We

provide a formal definition in Chapter 3, informally however, single-peaked preferences

allow for election mechanisms that encourage voters to report their preferences honestly.

We elaborate on what we mean by an election mechanism in Chapter 2, but intuitively,

it is a procedure for aggregating individual preferences into a collective choice.

To promote the single-peakedness of preferences, List et al. [26] propose deliberation as

a potential strategy, building on List’s earlier concept of meta-agreement [25], being the

idea that voters agree on which issue dimensions matter and where candidates stand on

these dimensions. List et al. [26] argue that deliberation can help voters develop more

coherent preference structures. Deliberation, then, helps restructure voters’ opinions

in a more coherent way, particularly on low-salience issues that receive little media

coverage.

Given deliberation’s potential to generate meta-agreement and more structured prefer-

ences, we aim to understand deliberation more rigoriously. With the rise of in-silico

experiments in computational social science, we take a computational approach to un-

derstanding deliberation. Specifically, we adapt the classic DeGroot model of opinion

dynamics [11] to the context of political deliberation, both on voter opinions and per-

ceived candidate positions.

To this end, we begin in Chapter 3 we review work on single-peakedness, deliberation,

and experiments, and present a deliberation model by Rad and Roy [32]. In Chapter 4

we formally define some properties of deliberation, and prove negative results regarding

“Honesty” during deliberation, showing deliberation is not strategyproof under a variety
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of circumstances. We also define an adaptation to the DeGroot model, as a mechanistic

explanation of deliberation through a computational model. In doing so, we find a

limitation in the applicability of this model in the form of a negative computational

complexity result. Specifically, we show NP-completeness of mapping voter opinions

to trust matrices. In Chapter 5 we explain the experimental setup we use to test our

model, the result of which we present in Chapter 6. Finally, we reflect on the results,

and broader implications of this thesis in Chapter 7.



CHAPTER 2

PRELIMINARIES

We begin with a short introduction to social choice. We outline the basic voting model,

closely following the notation and definitions by Brandt et al. [5], and restate classical

results relevant to the following chapters. These provide the theoretical context for the

remainder of the thesis.

2.1 The Basic Model

To model elections, we represent voters by the set 𝑁 consisting of 𝑛 voters. The possible

outcomes of an election, we represent with the set 𝐴 consisting of |𝐴| possible outcomes,

usually called the alternatives. Since our focus is on political elections, we will refer to

the outcomes of an election as candidates instead. Each voter represents their preference

on candidates through a preference relation ≻𝑖, for example if voter 𝑖 prefers outcome 𝑎

to outcome 𝑏, we write 𝑎 ≻𝑖 𝑏. When a voter’s preference is antisymmetric, complete,

and transitive, i.e. it orders all candidates and 𝑎 ≻𝑖 𝑏 and 𝑏 ≻𝑖 𝑐 implies 𝑎 ≻𝑖 𝑐, we

call this a linear order, denoted by 𝑅𝑖. We call the set of possible linear orders over the

candidates L(𝐴). For an election, all voters report a linear order. The vector consisting

of each voter’s preference is called a profile, denoted by 𝑹 = (𝑅1, . . . 𝑅𝑛) ∈ L(𝐴)𝑛.

Finally, a social choice function (SCF) 𝑓 decides the outcome of the election based on

the profile. We discuss the specifics of these functions in Section 2.2.

The last simple definition we will need is the majority relation [27]. Given some profile

𝑹 we can construct a majority relationship as follows: for each pair of candidates 𝑥, 𝑦,

we ask how many voters strictly prefer 𝑥 to 𝑦; if this number of people is greater than
𝑛
2 we get 𝑥 ≻maj 𝑦. If it is exactly equal to 𝑛

2 and thus is a tie, we simply write 𝑥 ∼ maj𝑦

(breaking ties arbitrarily), otherwise we write 𝑦 ≻maj 𝑥. We proceed with an example.

4



Preliminaries 5

EXAMPLE 1: Majority relation

1 2 3

𝑎 𝑏 𝑎

𝑏 𝑐 𝑐

𝑐 𝑎 𝑏

Given the profile on the left, we first start by comparing 𝑎 to 𝑏,

both voters 1 and 3 prefer 𝑎 to 𝑏 thus the majority prefers 𝑎 to 𝑏.

Comparing 𝑏 to 𝑐 the majority prefers 𝑏 to 𝑐. Finally, comparing

𝑎 to 𝑐, 𝑎 is preferred again. Thus, the majority relation is 𝑎 ≻maj

𝑏 ≻maj 𝑐.

From this, it is easy to see that the majority relation is in some sense a summary of the

voter’s preferences. In Section 2.3 we show how a divided population can lead to an

inconsistent majority relation.

Using this majority relationship, we can formulate our first notion of when a candidate

is winning. We call a candidate 𝑥 a Condorcet winner, if for each pairwise comparison

between 𝑥 and 𝑦 ∈ 𝐴 \ {𝑥} we have 𝑥 ≻maj 𝑦. For example, in Example 1 𝑎 would be the

Condorcet winner. We can relax the requirement of always winning to never losing, i.e.

we never have 𝑦 ≻maj 𝑥 but 𝑥 ∼ maj𝑦 is allowed. A candidate that never loses in any pair

wise comparison is called a weak Condorcet winner.

2.2 Social Choice Functions

As mentioned, in order to decide the outcome of an election we need a social choice

function 𝑓 , this function should map all possible profiles to an outcome, thus 𝑓 :

L(𝐴)𝑛 → 𝐴. A famous and simple example of a SCF is the plurality rule, which simply

elects the candidate voted into first place most often, i.e. “most first place votes wins”.

This rule presents one of the first challenges for many SCF: handling ties.

For elections, organizers likely will want to ensure the SCF has certain nice properties,

such as not favoring a candidate. In social choice, these properties are called axioms,

and the procedure of designing a SCF based on desired axioms is called the axiomatic

approach. The property just described is the axiom of neutrality, stating that the SCF

should be neutral with respect to the candidates. In this work, six main axioms are of

importance.

Axiom of Resoluteness. A SCF 𝑓 is resolute, if for every profile 𝑹 we have | 𝑓 (𝑹) | = 1.

Axiom of Surjectivity. A SCF 𝑓 is surjective, if for every candidate 𝑥, there exists a profile

𝑹 such that 𝑓 (𝑹) = 𝑥.
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Axiom of Non-Dictatorship. A SCF 𝑓 is non-dictatorial, if there does not exist a voter

𝑖 such that 𝑓 (𝑹) = top(𝑖, 𝑹) for all profiles 𝑹, where top(𝑖, 𝑹) extracts voter 𝑖’s most

preferred candidate from profile 𝑹.

Axiom of Strategyproofness. A SCF 𝑓 is strategyproof if, for any voter 𝑖 ∈ 𝑁, 𝑖 cannot

report an untruthful preference ≻′
𝑖
, such that 𝑹′ = (≻1, . . . , ≻′𝑖 , . . . , ≻𝑛) and 𝑓 (𝑹′) ≻𝑖

𝑓 (𝑹).

Axiom of Anonymity. A SCF 𝑓 is anonymous if, when the labels of voters are shuffled,

the winning candidate stays the same.

Axiom of Neutrality. A SCF 𝑓 is neutral if, when the labels of the candidates are shuf-

fled, the winner in the shuffled election should correspond to the winner in the original

election, under the relabeling.

There are many more axioms one could reasonably argue for, however, these are enough

to lead to the main impossibility results this work focuses on.

2.3 Negative Results

Classic social choice theory has many negative results, one such example is the Con-

dorcet cycle. This is a specific profile that results in a cycle in the majority relation, as

shown in the following example.

EXAMPLE 2: Condorcet cycle

1 2 3

𝑎 𝑏 𝑐

𝑏 𝑐 𝑎

𝑐 𝑎 𝑏

Voters 1 and 3 prefer 𝑎 to 𝑏 resulting in 𝑎 ≻maj 𝑏, next voters

1 and 2 prefer 𝑏 to 𝑐, resulting in 𝑏 ≻maj 𝑐. However, voters 2

and 3 prefer 𝑐 to 𝑎, resulting in 𝑐 ≻maj 𝑎. This yields the cycle

𝑎 ≻maj 𝑏 ≻maj 𝑐 ≻maj 𝑎.

It can be shown that under weak preferences, the Condorcet cycle can occur anytime

there are 3 or more candidates and voters. While Under strict preferences, Condorcet

cycles can occur whenever there is an odd number of candidates greater than one, and

the number of voters is a multiple of the number of candidates. As we will show later,

this profile can be the cause of some impossibility results.

One of the major negative results in social choice is that of the Gibbard-Satterthwaite

theorem [21, 35].
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Theorem 2.1. [Gibbard-Satterthwaite] There exists no resolute social choice function

for elections with |𝐴| ≥ 3 that is surjective, strategyproof, and non-dictatorial.

Unless we accept a dictatorship, it is impossible to have a voting rule that incentivizes

voters to report their preferences truthfully, when we want to pick a singular winner

from at least 3 candidates.

Though we do not provide a full proof, the Condorcet cycle offers some intuition for

why this result holds. Following Example 2, suppose we have a social choice function

(SCF) 𝑓 that elects candidate 𝑎. Voter 1 is very happy with this outcome, but voters

2 and 3 would prefer 𝑐 instead. Voter 2 could then misreport their preferences by

swapping 𝑐 and 𝑏, thereby causing 𝑐 to become the Condorcet winner. Now, if 𝑓 is both

strategyproof and resolute, it must still elect 𝑎 despite 𝑐 being the Condorcet winner.

Since 𝑓 is also surjective, 𝑎 cannot be the outcome for all preference profiles. Taken

together, the only apparent reason 𝑎 continues to win in this profile is because voter 1

wants it to—suggesting that voter 1 effectively dictates the outcome.

Fortunately, there seem to be ways around these negative results. Mainly through the

assumption that there is some structure in the preferences of voters.

2.4 Domain Restrictions

Negative results often are a result of a small set of ill-behaved profiles. If there is reason

to conclude these profiles are impossible in the election at hand, there is some hope of

constructing SCF’s satisfying our axioms. To speak more formally about profiles “not

occurring”, we introduce Domain restrictions, for this we use the definition by Elkind

et al. [14].

DEFINITION 1: Domain

Given a set of voters 𝑁, candidates 𝐴, and conditions 𝐶, the domain D of an election

is the set of all profiles 𝑹 such that all conditions 𝐶 are satisfied.

This definition is different from usual definitions in social choice in so far as it talks

about allowed profiles instead of allowed votes.

As stated earlier, the Condorcet profile is one such ill-behaved profile, as each candidate,

holds a majority preference over another candidate. Naturally one might consider if this

profile might even come up in practice, though conceivable, it seems generally unlikely

for there to exist a perfect split in opinions. Quite naturally one of the first “solutions”

one might consider is when the number of voters is not a multiple of the number of

candidates, though this offers little practical guidance for real elections, this is the first
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example of a domain restriction, we define a simple domain that prevents these cycles

as follows.

DEFINITION 2: DNo-tie

Let 𝐴 be the set of candidates and 𝑁 be the set of voters, of size 𝑛 such that 𝑛 ≠ 𝑘 · |𝐴|
for any 𝑘 ∈ N. We call this domain DNo-tie.

This allows us to state our first proposition.

Proposition 2.2. The plurality rule never returns an |𝐴|-way tie between candidates

when applied to DNo-tie.

Proof . Assume, for the sake of contradiction, the plurality rule in fact does return an

|𝐴|-way tie, this means all candidates were ranked first an equal number of times call

this 𝑘. Necessarily, we need exactly 𝑘 · |𝐴| voters, but this leads to a contradiction, as

this would no longer be inside DNo-tie.

This is a simple result, but it serves as an example on how we can use the properties

of the domain to prove things about the election. Gaertner [19] establishes two ways

in which a domain can be restricted. Firstly, we can restrict the domain to a number

of voters or candidates, which is what we did in DNo-tie. Secondly, the domain can be

restricted to have a certain structure, such as being single-peaked.

In an election, the candidates might represent a point on an axis, such that a voter

prefers a candidate more if they are closer to them on the axis. For example, if the can-

didates represent the minimum wage, where each cent-value constitutes a candidate.

Imagine a voter thinks the minimum wage should be some value 𝑥 and prefers candi-

dates that are closer to this value 𝑥. This results in each voter having a “peak” value,

and all other values are ranked in terms of their distance to 𝑥. Figure 2.1b shows what

this might look like for 3 voters. More generally, we call a profile single-peaked if there

exists an axis on which we can place the candidates such that all voters’ preferences

have a single peak on this axis. Definition 3 makes this notion formal.

DEFINITION 3: Single-peaked Profiles

A profile 𝑹 is single-peaked, if given some ordering ⊳ over the candidates, it holds

that for all voters 𝑖, and all 𝑎, 𝑏, 𝑐 ∈ 𝐴, if 𝑎 ⊳ 𝑏 ⊳ 𝑐, then voter 𝑖 cannot prefer both 𝑎

and 𝑐 to 𝑏; that is either 𝑎 ≻𝑖 𝑏 or 𝑐 ≻𝑖 𝑏 but not both.

In the following chapters, we explore whether deliberation can serve as a mechanism

for increasing single-peakedness in voter preferences
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1 2 3

𝑐 𝑑 𝑏

𝑑 𝑐 𝑐

𝑒 𝑏 𝑑

𝑏 𝑎 𝑎

𝑎 𝑒 𝑒

(A) Preference profile (B) Single-peaked profile visualization

FIGURE 2.1: An election with three voters and five candidates. Each voter has a unique
peak, and the profile is single-peaked with respect to a shared axis.



CHAPTER 3

LITERATURE REVIEW

In this chapter we review the theoretical foundations that inform our computational

approach to modeling deliberation. We examine three interconnected areas: domain

restrictions in social choice theory (particularly single-peaked preferences and heredi-

tary domains), the literature on deliberation and meta-agreement theory, and compu-

tational models of deliberative processes. Together, these establish both the theoretical

motivation for understanding how deliberation can produce well-structured preference

domains and the methodological foundation for our computational modeling approach.

3.1 Condorcet Domain

If our goal is to prevent Condorcet cycles, or in general have transitive majority rela-

tions, the best we could hope to do is to apply our domain restriction such that our

domain contains all profiles 𝑹 such that 𝑹 has a (weak) Condorcet winner. We call this

domain DCondorcet. Under this domain, let 𝑓Condorcet be the Condorcet Rule, which picks

a Condorcet winner. Then 𝑓Condorcet is strategyproof over DCondorcet [14].

Proof . (Elkind et al. [14]). Assume, for the sake of a contradiction, we have profiles

𝑹 = (≻1, . . . , ≻𝑖 , . . . , ≻𝑛) and 𝑹′ = (≻1, . . . , ≻𝑖′ , . . . , ≻𝑛) such that:

𝑓Condorcet(𝑹) = 𝑎, 𝑓Condorcet(𝑹′) = 𝑏, and 𝑎 ≠ 𝑏

Assume that 𝑖 has 𝑏 ≻𝑖 𝑎, thus strictly prefers 𝑏 to 𝑎. Then under 𝑹 there is a strict

majority 𝐶 ⊆ 𝑁 who have 𝑎 ≻ 𝑏, but 𝑖 ∉ 𝐶. Thus, in 𝑹′, 𝐶 is still a majority preferring

𝑎 to 𝑏, making 𝑎 the Condorcet winner in 𝑹′. This is in contradiction to 𝑏 winning in

𝑹′.

10
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This result is strengthened by Campbell and Kelly [6, 8], showing that for an odd num-

ber of candidates, 𝑓Condorcet is the only voting rule over DCondorcet that is strategyproof,

surjective and non-dictatorial.

When surjectivity is strengthened to neutrality, and non-dictatorship to anonymity,

𝑓Condorcet is the only strategyproof voting rule over DCondorcet for an odd number of

voters [7].

Though this result is positive, we might wonder how stable it is. For this we need to

define a notion of stability. One natural way to think about it is as follows: suppose one

of the candidates or voters drops out, do we keep the nice structure of the domain? If

this is true we consider the domain stable and call it hereditary.

DEFINITION 4: Hereditary (Elkind et al. [14])

A domain D is called hereditary if for every profile 𝑹 ∈ D , and every subprofile 𝑹′

obtained by deleting voters and candidates from 𝑹, it holds that 𝑹′ ∈ D .

DCondorcet is not hereditary. This is easy to see through an example:

EXAMPLE 3: DCondorcet is not hereditary

1 2 3 4

𝑎 𝑏 𝑐 𝑎

𝑏 𝑐 𝑎 𝑐

𝑐 𝑎 𝑏 𝑏

We can see that in this example, 𝑎 is the weak Condorcet

winner, as it beats 𝑏 and is tied with 𝑐. If we remove voter

4 however, we return to the original Condorcet cycle.

If a domain fails to be hereditary, designing an election with the domain in mind be-

comes hard. In the case of DCondorcet it might be reasonable to make use of a rule such

as Black’s rule [3], which uses the Condorcet rule only if there is a Condorcet winner

and the Borda rule otherwise. This however is not a strategyproof voting rule in gen-

eral. Instead, we might want to look at hereditary strategyproof domains. We present

the single-peaked domain DSP , which will be the main focus of this thesis. This is the

domain of all single-peaked profiles. We first proceed to show that this domain indeed

is hereditary.

Proposition 3.1. (Elkind et al. [14]). DSP is hereditary.

Proof . (Voter Deletion). If we remove a voter, this does not affect the other voters, so

the profile is still single-peaked. ✓
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(Candidate Deletion). Consider any voter 𝑖 and their single-peaked vote, if we remove

some candidate 𝑥, to this voter all candidates which they preferred to 𝑥 stay in the

same position, while all other candidates move up one rank, thus preserving the order,

and thus single-peakedness. ✓

We have demonstrated thatDSP possesses the desired properties. However, we currently

lack a method to ensure that we operate within DSP. Deliberation may provide a mech-

anism to ensure that preference profiles move toward single-peakedness. We will now

provide a concise overview of the literature on deliberation.

3.2 The History of Deliberation and Meta-Agreement

We have provided an overview of different domain restrictions and their properties,

showing they avoid Condorcet cycles. Bochsler [4] however, argues that Condorcet

cycles are empirically rare. The next section is dedicated to explaining how deliberation

might explain this is so through examining the historical ideas around deliberation and

deliberative democracy, as well as that of meta-agreement.

3.2.1 Deliberation

Deliberation, though intuitively familiar as the process of multiple people talking through

a problem with the goal of coming to an agreement, compromise, or solution. Provid-

ing a definition that is both clear and consistent with the literature in Political Science,

Philosophy and Social Choice is difficult.

Instead of defining deliberation in full generality, we instead focus on deliberation in a

political sense. Freeman [18] gives an overview of deliberative democracy. He notes

that there is no settled definition of deliberative democracy, however, one account is

that of public discussions before voting. Furthermore, he shares the intuitive idea that

a deliberative democracy contains open legislative deliberation and a pursuit of the

common good. He further proceeds to give a more detailed conception of deliberative

democracy, according to which a deliberative democracy is one in which political agents

or their representatives:

1. Aim to collect, deliberate and vote

2. Represent their sincere and informed judgments

3. Vote and deliberate on measures beneficial to the common good for the citizens

4. Are seen and see each other as political equals

5. Have Constitutional rights and their social means enable them to participate in

public life



Literature Review 13

6. Are individually free, such that they have their own freely determined conceptions

of the good

7. Have diverse and disagreeing conceptions of the good

8. Recognize and accept their duty as democratic citizens, and do not engage in

public argument on the basis of their particular moral views incompatible with

public reason

9. Agree reason is public, in so much as it is related to and advances common inter-

ests of citizens

10. Agree that their common interest lies primarily in freedom, independence and

equal status as citizens

These features allow us to be more precise when we talk about a deliberative democracy,

and in turn be more careful about what deliberation must entail. Cohen [9] further

argues that deliberation is needed for democratic legitimacy. By this he means that

without deliberation, a democracy is simply the will of the majority, but since majority

rule is unstable, as shown through the Condorcet cycles, it is simply a reflection of the

particular institutional constrains at the time, which end up dictating where the cycle

breaks. He further goes on to describe the ideal deliberative procedure as follows:

1. Ideal deliberation is free. Participants regard themselves as only bound by the

results of the deliberation, and the preconditions thereof. Participants act in ac-

cordance with the decision made through deliberation, and it being agreed on is

sufficient reason to do so.

2. Ideal deliberation is reasoned. Participants must state their reasons for supporting

proposals.

3. In ideal deliberation, parties are equal, both formally and substantively. There are

no rules that single individuals out, and existing distributions of power do not lend

a party the opportunity to contribute to deliberation.

4. Ideal deliberation aims to arrive at rationally defensible consensus.

From both Cohen’s and Freeman’s accounts, there is clear overlap, with Freeman for-

mulating the necessary preconditions for participants to engage in ideal deliberation.

Both Cohen and Freeman require freedom in a broad sense. Freedom to have a personal

conception of the good, and to acknowledge and act in accordance to a decision that

was made through deliberation.
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3.2.2 Meta-Agreement

Consensus, sometimes referred to as substantive agreement, then seems like a natural

goal for deliberation. Elster [15] argues that this is not only the goal, but through unan-

imous agreement this process completely replaces voting, thereby circumventing social

choice’s classic impossibility theorems: “Or rather, there would not be any need for an

aggregation mechanism, since a rational discussion would tend to produce unanimous

preferences.” (p. 112). Though it would be desirable to circumvent these negative

results, in practice people, even after deliberation, might not and indeed often do not

come to full substantive agreement. List [25] instead proposes another perspective on

deliberation based on meta-agreement

Under meta-agreement individuals do not need to agree on their most preferred out-

come, instead they only need to agree on the dimensions of the problem. To contrast

this with Substantive-agreement, under which individuals do not need to conceive of

the problem in the same way, only requiring agreement on the preferred outcome. This

means that under substantive agreement, voters can agree outcome 𝑎 ≻ 𝑏 for different

reasons, while under meta-agreement, if voters disagree on 𝑎 ≻ 𝑏 it must be for the

same reason.

According to List [25] there are three hypotheses that need to be satisfied for delibera-

tion to induce meta-agreement:

D1 Deliberation leads people to discover a single issue-dimension

D2 Deliberation lets people place all possible candidates in this issue-dimension

D3 After deliberation, people update their preferences picking a preferred outcome,

and ranking all other candidates based on the distance to this outcome in the

issue-dimension

These are necessary conditions for meta-agreement. From this is it also clear to see

that, given that there is exactly one issue-dimension, single-peaked profiles are, by defi-

nition, a direct consequence. This property of inducing single-peakedness makes meta-

agreement particularly desirable, as it enables circumvention of the Gibbard–Satterthwaite

theorem [21, 35] through domain restriction to DSP.

List et al. [26] provide empirical evidence for this theory of deliberation, showing delib-

eration increases proximity to single-peakedness through voter deletion (PtS-V), which

they quantify as 𝑆 = 𝑚
𝑛

where 𝑛 = |𝑁 | and 𝑚 is the largest subset of voters such that their

profile is single-peaked. Furthermore, they also introduce the notion of salience, which

represents to what extent a topic is salient in the voting population. In order to test

whether deliberation increases single-peakedness through meta-agreement, they test the
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following four hypotheses: (H1) deliberation increases PtS-V. (H2’)1 high salience issues

show less increase in PtS-V than low salience issues. (H3) Effective deliberation, in the

sense that more is learned during deliberation, results in bigger increases of PtS-V. (H4)

All things equal, the increase is largest for issues with natural issue-dimensions. They

find support for all these hypotheses, showing that on low-moderate salience issues PtS-

V increases following deliberation.

It is important to note that these claims simply predict what will happen, there is not

much explanatory power to these claims. Little is known about the process through

which voters would signal the issue dimensions, nor how they decide on which ones to

present.

Furthermore, Ottonelli and Porello [30] show single-peakedness from meta-agreement

to be a stronger requirement than it may seem at a first glance. Firstly, for (D1) to

hold, the issue-dimension must hold some semantic meaning, as it is unclear how peo-

ple can exchange conceptualization of the problem otherwise. Furthermore, the issues

must consist of two semantic issues, with only one issue voters simply reach substantive

agreement. A further restriction on these two dimensions is that they need to be oppo-

site, with mutually exclusive justifications. If this is not the case, a voter can agree with

both justifications, and thereby introduce a new implicit dimension “balance”, which

then violates the conditions under which single-peaked profiles guarantee the existence

of fair, strategyproof voting rules. D2 requires that all voters share the exact same

semantic understanding of the dimension, and the outcome associated with each candi-

date. Finally, D3 requires D1 and D2 to have happened before in order, indeed this is

the weakest of the three requirements.

Thus, meta-agreement as a means for single-peaked profiles is still quite restrictive,

needing multiple forms of unanimity, and only applying to problems with certain prop-

erties. Nonetheless, meta-agreement might still play a crucial part in a deliberative

process. In the next section, we will look into a specific computational model of delib-

eration.

3.3 Models of Deliberation

Rad and Roy [32] model deliberation and its effect on single-peakedness. To this end,

they model deliberation as a process where each voter announces their preferences,

and all other voters update their current preference towards that of the announced

preference, in doing so they have a bias towards their own preference, as such they try to

1This is a test for a corollary. H2 states that the rate of increase of PtS-V decreases. This is not experi-
mentally testable, however since high salience means some sort of deliberation has happened before, they
expect this to approximate this affect.
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update their preference by minimizing the distance between their current preference and

the announced one. This process repeats until all voters have announced their opinion

once, which constitutes one “round” of deliberation. The preference a voter adopts

when updating must lie between their current profile and the announced profile, which

profiles are considered to be “between” is defined by the distance metric used. They

considered three distance metrics, Kemeny-Snell (KS) [24], Duddy-Piggins (DP) [12],

and Cook-Seiford (CS) [10]. Both KS and DP depend on the judgment set resulting from

the voters’ preferences, which contains, for each pair of candidates 𝑎, 𝑏, where 𝑎 ≠ 𝑏,

a proposition (𝑎 ≻ 𝑏) or ¬(𝑎 ≻ 𝑏). The KS distance is then defined as the number of

binary swaps a judgment set needs to undergo before it becomes the target judgment

set, an example for such a swap would be going from (𝑎 ≻ 𝑏) to ¬(𝑎 ≻ 𝑏). The DP

distance is defined on the graph of judgment sets, where 2 sets share an edge if there is

no judgment set between them. Since KS and DP share their notion of betweenness, we

define their betweenness as follows.

DEFINITION 5: J-Betweenness

A judgment set 𝐽𝑖 is between preferences 𝐽 𝑗 and 𝐽𝑘 if for every 𝑥, 𝑦 ∈ 𝐴, the propo-

sition over 𝑥 and 𝑦 in 𝐽𝑖 either agrees with the proposition over 𝑥 and 𝑦 in 𝐽 𝑗 or

𝐽𝑘 .

From this definition it is clear that this could only result in a voter updating their original

opinion in which they have (𝑎 ≻ 𝑏) to a new opinion where ¬(𝑎 ≻ 𝑏) only if the

announced opinion contains ¬(𝑎 ≻ 𝑏).

The CS distance is simpler and is simply defined as the number of positions two voters

disagree on, and a preference is between two others if for each position it agrees with

one of the two preferences.

Each distance has different trade-offs. The CS metric is the simplest, but might exagger-

ate the distance when there are many candidates, for example if two voters agree on the

relative ranking of all but one candidate, which one voter happens to rank first, thereby

shifting the opinion of voter 2 right by one, the CS distance would conclude that these

voters are in full disagreement, while reasonably one could conclude their opinions do

not differ much. The KS distance, using judgment sets instead of raw profiles, captures

this more effectively, while still being relatively easy to compute, but in case of many

disagreements, it is likely to over count the distance, since the binary changes do not

capture logical necessities. For example, swapping (𝑎 ≻ 𝑏) to ¬(𝑎 ≻ 𝑏) must result in

(𝑏 ≻ 𝑎) becoming true (in the case of strict preferences), thus one might reasonably con-

clude this should only count as 1 step. DP improves upon this, Figure 3.1 shows a graph
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used for the DP distance in the case of 3 candidates. The graph shows the benefit of us-

ing the DP distance, as the edges in graphs automatically include logical consequences

that the KS distance might not account for. By capturing logical consequences, the DP

distances become much harder to compute, mainly through the cost of constructing the

full graph of judgment sets, which grows in 𝑓𝑚 = 1 + ∑𝑚−1
𝑗=1

(𝑚
𝑗

)
𝑓𝑛− 𝑗 in the number of

vertices, where 𝑚 is the number of candidates [23]. This can easily be verified by noting

that the number of judgments sets over 𝑚 corresponds to the number of weak preference

rankings over 𝑚 candidates, which is defined as candidates, and a binary choice on each

proposition.

1 > 2 > 3

1 > (2, 3)
1 > 3 > 2

(1, 2) > 3

(1, 2, 3) (1, 3) > 2

2 > 1 > 3

2 > 3 > 1

2 > (3, 1)

(2, 3) > 1
3 > 1 > 2

3 > 2 > 1

3 > (2, 1)

FIGURE 3.1: The graph of judgment sets for all preferences over three candidates,
brackets indicate ties. For readability, the corresponding preferences are uses as node

labels

Apart from these distances, Rad and Roy define a voter as a tuple of a linear order2 and

a bias 𝑣 = ⟨𝑟, 𝑏⟩, with 𝑏 ∈ R[0,1] . Finally, a deliberation step 𝐷𝑠 : 𝑉𝑛 → 𝑉𝑛, where 𝑉 is

the set of all possible voters (L(𝐴) ×R[0,1])𝑛 and 𝑠 being one of the distance metrics (KS,

DP, CS). The deliberation step 𝐷𝑠 (𝑉, 𝑣.𝑟) returns a fully updated voter set, where each

voter has updated their opinion in response to the announced opinion 𝑣.𝑟. We formulate

this procedure in the following program:

2We exclude their analysis of preferences containing ties.
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input : Set of Voters 𝑉 , distance metric𝑠

output: Updated set of Voters 𝑉

𝑉u ← 𝑉 // Set of unannounced voters (references to 𝑉)

while |𝑉u | > 0 do
Select a random 𝑣 ∈ 𝑉u

𝑉u ← 𝑉u \ {𝑣}
𝑉 ← 𝐷𝑠 (𝑉, 𝑣.𝑟) // Update voters based on 𝑣’s preference

Here, we use 𝑣.𝑟 to denote the preference component of voter 𝑣 = ⟨𝑟, 𝑏⟩. The deliberation

step 𝐷𝑠 (𝑉, 𝑣.𝑟) returns a new set of voters, where each voter updates their opinion based

on 𝑣’s preference 𝑟, under the influence of the distance metric 𝑠. Each voter updates

their preference to a new profile 𝑟 ′ that minimizes the weighted distance between their

original preference 𝑟𝑖 and the announced preference.

√︃
𝑏𝑑𝑠 (𝑟𝑖 , 𝑟 ′)2 + (1 − 𝑏)𝑑𝑠 (𝑣.𝑟, 𝑟 ′)2 (3.1)

Here 𝑏 is this voter’s bias, and 𝑑𝑠 is the distance between two profiles under distance

metric 𝑠.

We present a replication and extension of their work Chapter 6. Furthermore, we present

novel (negative) results based on this model in Chapter 4.

While this model effectively captures preference communication, it falls short as a model

of meta-agreement in at least two important respects. Firstly, agents do not conceive of

anything relating to the structure of the problem. They simply announce their pref-

erences, and all other listen and update accordingly, thereby moving to some sort of

substantive agreement. Secondly, the model presupposes that all opinions are equally

defensible, and that each voter is equally able to formulate this defense. To address this,

we formulate a new model in Chapter 4.

3.4 Deliberative experiments

Empirically, deliberation appears to bring about numerous positive outcomes, both from

the perspectives of the electorate and democratic theorists. One example is the Citizens’

Initiative Review (CIR), in which randomly selected voters come together to evaluate a

policy proposal. Their goal is to collaboratively draft an informational brochure present-

ing arguments for and against the proposal, aimed at helping the broader public make

informed decisions. As part of this process, participants deliberate on the issue and con-

sider possible solutions. CIRs have been successfully implemented in the United States,
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where they have been shown to enhance voter knowledge and judgment [20]. Their

positive effects have also been observed outside the U.S., including in Finland [36].

While this line of research has largely focused on participants’ experiences and the de-

velopment of their attitudes and knowledge, studies that quantitatively map how voters’

opinions shift during deliberation have been relatively scarce.

An important exception is a study by Fishkin et al. [17], who conducted the AMERICA IN

ONE ROOM experiment, a large-scale deliberative event in which a representative sample

of U.S. voters gathered to discuss major policy issues in the lead-up to the 2020 pres-

idential election. Participants completed surveys before and after the event assessing

their political knowledge, policy preferences across five issue domains (climate, immi-

gration, the economy, health care, and foreign policy), and partisan affiliation (including

intended vote choice and ideological self-identification). A control group completed the

same surveys without participating in deliberation. The researchers found that delib-

eration increased participants’ likelihood of voting, improved their opinions of political

opponents, and increased support for Joe Biden—especially among moderate and pre-

viously disengaged voters. These effects were explained in terms of a “civil awakening”,

wherein deliberation led to increased self-efficacy and political engagement among pre-

viously uninvolved citizens. Notably, these effects persisted for at least a year after the

intervention.

While the study did not elicit full preference rankings over all political options, it pro-

vides strong evidence for both increased meta-agreement (i.e., alignment on how politi-

cal differences are framed or understood) and substantive agreement (i.e., convergence

of actual issue positions). Participants’ opinions tended to shift toward the center, with

conservative voters showing the most change. Moderate voters also became more likely

to support Biden, suggesting changes in how they conceptualized the candidates’ ideo-

logical positions.



CHAPTER 4

THEORY

In the model of deliberation by Rad and Roy [32], outlined in Section 3.3, they aim

to model deliberation and show that deliberation results in nicely structured profiles

which allow for strategy proof voting rules. One important caveat, given by the authors

as well, is all participants should honestly and truthfully participate in deliberation.

We now provide a formal statement, showing deliberation does not prevent strategic

behavior.

Proposition 4.1. The process of deliberation over |𝐴| ≥ 3 through deterministic delib-

eration procedure 𝐷 : L(𝐴)𝑛 → L(𝐴)𝑛, followed by voting with voting rule 𝑓 cannot

be surjective, strategyproof and non-dictatorial.

Proof . Assume, towards a contradiction, such a pair of deliberative procedure (𝐷) and

voting rule ( 𝑓 ) exists. Any deterministic deliberation procedure 𝐷 could, in principle,

be embedded into a voting rule 𝑓 ′(𝑹) = 𝑓 (𝐷 (𝑹)), such that the voting rule simulates

𝐷 before applying 𝑓 , which would result in voting rule 𝑓 ′ being surjective, strate-

gyproof and non-dictatorial. This is a contradiction, by the Gibbard-Satterthwaite

Theorem 2.1.

We extend upon this result, showing the inclusion of biases in voters does not mitigate

the negative result. For this, we define BD as follows:

DEFINITION 6: Biased Deliberation

A deliberative procedure with biases BD : L(𝐴)𝑛×R𝑛[0,1] → L(𝐴)
𝑛 is an extension on

a standard deliberative procedure. BD has access to the bias each voter has towards

their own opinion.

20
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We now proceed with a corollary on Proposition 4.1. Towards this, we assume biases are

true, in the sense that a voter cannot help but be ‘convinced’ by the presented profiles as

much as their bias allows for this. We think this assumption is weak and natural in the

light of the current model. Furthermore, a violation of this assumption would not imply

the following corollary to be false, instead the bias itself becomes a point of strategy,

allowing voters to pretend to be more hardheaded than they in fact are.

Corollary 4.2. A deliberative procedure with biases, followed by voting with any

voting rule 𝑓 , cannot be surjective, strategyproof and non-dictatorial

The proof of this follows from a reduction of the biased Deliberation BD to general

deliberation 𝐷.

Proof . Take any election consisting of biased deliberation BD and voting rule 𝑓 , since

biases 𝒃 are true by assumption, they must be fixed, meaning that 𝒃 is not reported

but some fact of the matter. If this election was immune to strategic manipulation,

then a deliberative procedure 𝐷 could embed this 𝑏, and simulate biased deliberation

BD, resulting in 𝐷′(𝑹) = BD(𝑹, 𝒃). As a direct corollary to Proposition 4.1, such a 𝐷′

cannot be surjective, strategyproof and non-dictatorial, showing a contradiction.

This result is independent of the distance metric chosen. From here we now show that

even if we take the deliberation procedures on its own, it still not immune to strategic

manipulation. For this, we restate strategyproofness as follows:

DEFINITION 7: Strategyproofness of Deliberation

A deliberation procedure is strategyproof if there exists no voter 𝑖 such that there is

a profile 𝑹, in which 𝑖 misreporting their preference 𝑅𝑖 as 𝑅′
𝑖

results in the profile

after deliberation 𝐷 (𝑹) is further from the 𝑖’s original preference than if they had

reported 𝑅′
𝑖
. This distance is measured as

Dist(𝑅𝑖 , 𝐷 (𝑹)) ≥ DistS(𝑅𝑖 , 𝐷 (𝑹′)).

Where the Dist function is simply the sum of all distances with distance measure 𝑆

between 𝑅𝑖 and all preferences in 𝑹.

One important note is that in the final profile, the preferences of voter 𝑖 might not be the

same as it was before the deliberation. That is why the distance is calculated w.r.t. 𝑖’s

original preference. Intuitively this could be read as 𝑖 misreporting their preference to

prevent even their own mind from being changed. Using this definition, we show that

the deliberative procedures, under the distance metric KS, DP, CS are not strategyproof.

Stated as follows:
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Proposition 4.3. Deliberation, as defined by Rad and Roy [32], under distance mea-

sures KS, DP, CS is not strategyproof, for 𝑛 ≥ 2 and 𝑚 ≥ 3.

We provide a proof by construction, we show how to do this for the KS and DP distance

measures, as they share the same profiles for this proof. The proof for the CS distance

measure is laid out in Appendix B.1.

Proof . Assume the following population: we have voter 1 whose bias is 1, and all

other voters 𝑗 ≠ 1 have bias 0.5. Furthermore, we have DistS(𝑅1, 𝑅 𝑗) = 2 for all

𝑗 . Voter 1 now has the option to report 𝑅′1 instead, which has DistS(𝑅′1, 𝑅 𝑗) = 4

and DistS(𝑅′1, 𝑅1) = 2. If voter 1 reports 𝑅′1, then all 𝑗 will update towards 1’s true

preference, as using equation (3.1) we get 𝑟 (𝑅 𝑗 , 𝑅
′
1, 𝑅1) = 4, while 𝑟 (𝑅 𝑗 , 𝑅

′
1, 𝑅 𝑗) =

𝑟 (𝑅 𝑗 , 𝑅
′
1, 𝑅

′
1) = 16.

Resulting in DistS(𝑅1, 𝐷 (𝑅1, 𝑹−1)) = 2(𝑛 − 1) > DistS(𝑅1, 𝐷 (𝑅′1, 𝑹−1)) = 0.

Since 1 has a bias of 1, the order of the deliberation has no effect.

We now show that for distance measures KS and DP, there exists these 3 preference

orderings such that the necessary profile can be constructed. We use the following

profiles:
𝑅′1 = 𝑎 ≻ 𝑐 ≻ 𝑏 ≻ · · · ≻ 𝑚,

𝑅1 = 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ · · · ≻ 𝑚,

𝑅 𝑗 = 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ · · · ≻ 𝑚.

As we are only allowing strict preferences, both distance metrics behave the same

locally, with the distance of two profiles being 2 whenever one is 1 swap of candidates

away from the other. This means that 𝑅𝑖 and 𝑅 𝑗 have a distance of 2, as well as 𝑅′1 and

𝑅1 having a distance of 2. In this case, the total distance from 𝑅′1 to 𝑅 𝑗 is simply the

sum of the local distances for both distance metrics, thus satisfying our requirements.

These results show it is likely frivolous to attempt to design a strategy proof deliberation

procedure of the likes shown. Instead, focus is now brought to modeling ‘ideal’ deliber-

ation, as laid out in Section 3.2.2. We provide the following mathematical formulations

to the four tenants laid out. Freedom: voters can report any preference, Reason: voters

are rational, Equality: no voter has special rights, i.e. the axiom of neutrality is satisfied,

Consensus: voters deliberate with the aim to reach consensus. Which we extend with

Honesty: Voters represent their true beliefs and preferences only.
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4.1 Our Model

In an attempt to model meta-agreement through deliberation, our model needs to make

a proper distinction between the ‘substantive level’ and the ‘meta level’. In order to do

so, we propose the following, let Ψ = {𝜓1, · · ·𝜓𝑘} denote the set of policies that could be

implemented. A voter 𝑖 ∈ 𝑁, has support for these policies, represented as a number on

an interval over R. At a meta level, a voter has an understanding of which policies are

supported by which candidates. This is modelled as a matrix, representing the estimated

support for each policy for a candidate, thus voter 𝑖 has Σ𝑖, where Σ𝑖
𝑗 ,𝑥

represents this

voters’ estimated support of 𝜓 𝑗 by candidate 𝑥.

This model does not explicitly model 𝐷1, the discovery of a common issue dimension,

on the one hand, if the candidates can be reduced to a line, this model should be able

to capture this, even if this one line crosses through multiple issue dimension. For

example, if all issues are strongly (negatively) correlated on the side of the candidates,

but not on the side of the voters, this model allows for the voters to recognize this by

properly estimating the candidates’ support matrices, while voters themselves can keep

an uncorrelated support vector. In the case that the actual issue dimension is simply

not included in Ψ, our model would not be able to discover this new dimension, even

if human deliberation feasibly could. More straightforwardly, if the measured support

is irrelevant to the true issue dimension(s), our model cannot recover the true issue

dimension.

Our model adapts the DeGroot learning model, which originally models probability dis-

tributions. In that model, a voter is a node in a graph, and deliberation can be modeled

as a Markov chain. In our model, we keep voters as nodes on a graph, as well as a

Markov chain, however, instead of a probability distribution, a voter has a support vec-

tor 𝑆𝑖 ∈ R |Ψ |[0,1] , and estimated support matrix Σ𝑖 ∈ R |𝐴|× |Ψ |[0,1] .

Note that this does not mean that all policies have to have any (estimated) support, nor

that an candidate can only support a specific number of policies, in principle there can

be candidates that represent the status quo, and thus do not support any policies, and

there can be candidates that are estimated to support all policies. Let 𝑺 = [𝑆1, . . . , 𝑆𝑛]𝑇

denote the population opinion, which has shape |𝑁 | × |Ψ|.

In order to extract a ballot from this matrix, we assume a voter ranks the candidates

such that the most preferred candidate has the smallest distance between the estimated

support matrix for that candidate and her own. We further allow this distance to be

weighted, such that a voter may have one or more policies their think are more impor-

tant.
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Next, we define the deliberative procedure in terms of the trust matrix. A deliberative

step can be modelled using a transition matrix 𝑇 , defined as follows:

𝑇 =


𝑡11 · · · 𝑡1𝑛
...

. . .
...

𝑡𝑛1 · · · 𝑡𝑛𝑛


Here each 𝑡𝑖 𝑗 represents how much voter 𝑖 trusts the opinion of voter 𝑗 , in order for

this to be a proper stochastic matrix, all rows must sum to one, and have non-negative

entries. Although this last requirement could be seen as unrealistic, as a voter might

actively distrust another voter and update away from their opinion.

Using this, we can now model the opinions of voters after a deliberative step as a matrix

multiplication on some matrix 𝑀:

𝑀 (1) = 𝑇𝑀 (0) (4.1)

Each entry in the matrix then is simply a linear combination of the other entries in

that same column in 𝑀 (0) . In the case of 𝑀 = Σ, this means that voter 𝑖’s support

vector becomes a linear combination of all support matrices, weighted by the trust in

each voter. Deliberation can now be modelled by taking powers of the trust matrix, 𝑇 𝑡 ,

representing 𝑡 deliberation steps. This matrix now represents how much each voter 𝑖 has

learned from the other voters, and can then be used to right multiply both the support

and the estimated support matrix to calculate a voter’s beliefs after deliberation.

Finally, we provide an example of the first deliberation round in example 4.1, since it is

identical for both 𝑆 and Σ, we only show it for Σ. The example also shows how voters

can initially agree on their support for policies, while disagreeing on their preferred

candidates, using meta-agreement to come to a consensus.

EXAMPLE 4: DeGroot deliberation

We have voters 𝑁 = {1, 2}, events Ψ = {𝜓1, 𝜓2}, and candidates 𝐴 = {𝑎, 𝑏}. The voters

both think that 𝜓1 = 1, 𝜓2 = 0, meaning that they fully support the first policy and

reject the second, they estimate the support by candidates as:

1 𝜓1 𝜓2

𝑎 0.5 0

𝑏 0.5 1

2 𝜓1 𝜓2

𝑎 1 0.9

𝑏 1 0.1
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Interpreting this matrix for both players on 𝜓1 shows, voter 2 thinks 𝑎 and 𝑏 fully

support 𝜓1, while voter 1 thinks that 𝑎 and 𝑏 support 𝜓1 less. We can encode this into

the estimated support matrices as follows:

Σ1 =

[
0.5 0

0.5 1

]
Σ2 =

[
1 0.9

1 0.1

]
This results in voter 1 preferring candidate 𝑏 over candidate 𝑎, while voter 2, prefers

𝑎. Intuitively, since voter 1 thinks 𝜓1 is equally supported by each candidate, while 𝜓2

is not supported by 𝑎, it makes sense for them to prefer candidate 𝑎. Looking at the

distances, we see that the absolute distance between voter 1 and candidate 𝑎 is 0.5,

while for candidate 𝑏 it is 1.5. For voter 2 we see that the distance to 𝑎 is 0.9, while

for candidate 𝑏 is it 0.1. Thus, voter 2 prefers 𝑏 to 𝑎.

For the deliberation, we assume the following trust matrix:

𝑇 =

[
0.3 0.7

0.2 0.8

]
We get the following updated opinions:

𝚺 (1) = 𝑇𝚺 (0)

= 𝑇

[
Σ1Σ2

]𝑇
=

[
(0.3Σ1 + 0.7Σ2) (0.2Σ1 + 0.8Σ2)

]𝑇
=

[ [
0.85 0.63

0.85 0.37

] [
0.9 0.72

0.9 0.18

] ]𝑇
These new estimates are not yet in full consensus, meaning meta-agreement has not

yet been reached. Looking at their corresponding ballots, however, shows there is con-

sensus on their most preferred candidate, as they both agree that candidates support

𝜓1 equally, while 𝑏 supports 𝜓2 less.

4.1.1 Consensus

Using this model of deliberation, meta-agreement can be seen as some shared estimated

support matrix over all policies. If the goal of deliberation is meta-agreement, then the

study of interest becomes the dynamics of convergence towards a unified estimate.
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We present a summary of results relating to strongly connected graphs, as well as graphs

for which there exists only closed and strongly connected subsets of nodes. For other

results we refer to Golub and Jackson [22]. Firstly we focus on the strongly connected

graphs.

Proposition 4.4. (Golub and Jackson [22]). For a strongly connected matrix 𝑇 , the

following properties are equivalent:

o 𝑇 is Convergent

o 𝑇 is Aperiodic

o There exists a left eigenvector 𝒔 for matrix 𝑇 , with corresponding eigenvalue 1,

whose entries sum to one, such that for every 𝑃𝑖, we have(
lim
𝑡→∞

𝑇 𝑡𝑷
)
𝑖
= 𝒔𝑷

This result is positive for studying the convergence dynamics, as no knowledge of the

initial distribution is needed to determine convergence, it allows us to simply verify one

of these three properties on the network. Though strongly connected graphs might be

a strong requirement, in the case of small scale (in person) deliberation, this might be

realistic. Fortunately, even outside this setting it might be possible to reach convergence.

For this we first define what a closed set of nodes is.

DEFINITION 8: Closed set of Nodes

A set of Nodes 𝐶 = {1, . . . , 𝑛} is closed if for each 𝑖, 𝑗 ∈ 𝐶 we have 𝑇𝑖 𝑗 ≥ 0 and for

each 𝑖 ∈ 𝐶, 𝑗 ∉ 𝐶 we have 𝑇𝑖 𝑗 = 0

Using this definition, if each node is part of a closed set, we can form the following

proposition

Proposition 4.5. (Golub and Jackson [22]). If for each 𝑖 ∈ 𝑁, 𝑖 is a member of a

closed set in the graph, and each closed set is strongly connected, 𝑇 is convergent.

4.1.2 Voter Mapping

One might want to expand this model to capture larger scale group dynamics, such

as social networks. For this a reasonable approach could be to gather data regarding

the opinion of the general population, and to map this onto a graph representing the

communication in the population. For this we might want to find a bijection between

the voters and the nodes such that the difference between the shortest paths in the graph

and the opinion distance is minimized.
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We show that mapping voters to a graph as just described is NP-Hard, and the decision

variant of the problem to be NP-Complete. We call this problem Distance-based Voter

Mapping, and define it as follows.

PROBLEM 1: 𝛿-DBVM(𝑆)

Given: 𝐴, 𝐵 ∈ 𝑆𝑛×𝑛, 𝑘 ∈ R≥0

Decision: Does there exist some bijection 𝑓 : [𝑛] → [𝑛], such that:

𝛿(𝐴, 𝑓 (𝐵)) ≤ 𝑘

Here we take 𝑓 (𝐵) to mean the matrix 𝐵′ that is created when we take each 𝐵′
𝑖, 𝑗

=

𝐵 𝑓 (𝑖) , 𝑓 ( 𝑗 ) and 𝛿 is some distance function, 𝛿 : 𝑆𝑛×𝑛 × 𝑆𝑛×𝑛 → R≥0.

We will be needing the Quadratic assignment problem (QAP), we formulate a decision

variant of QAP as follows.

PROBLEM 2: QAP-Decision

Given: 𝐴, 𝐵 ∈ 𝑆𝑛×𝑛, 𝑘 ∈ R≥0

Decision: Does there exist some bijection 𝑓 : [𝑛] → [𝑛], such that:∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗 · 𝐵 𝑓 (𝑖) , 𝑓 ( 𝑗 ) ≥ 𝑘

Theorem 4.6. 𝛿-DBVM(𝑆) is NP-Complete for 𝛿 ∈ {ℓ1, ℓ2} and 𝑆 = {0, 1}𝑛

Proof . ( =⇒ NP-Hard) The proof follows from a reduction to the Quadratic Assign-

ment Decision Problem.

Let 𝐴 be the matrix of pairwise distances between voters, and let 𝐵 be the matrix

of shortest-path distances in the graph 𝐺, and 𝑘 be the 𝛿 achieved by the optimal

bijection. ℓ2-DBVM(𝑆) requires finding a bijection 𝑓 that minimizes the ℓ2 objective:√︄∑︁
𝑖, 𝑗

(
𝐴𝑖, 𝑗 − 𝐵 𝑓 (𝑖) , 𝑓 ( 𝑗 )

)2
.

Since the square root is a strictly increasing function, minimizing the expression above

is equivalent to minimizing the sum inside:∑︁
𝑖, 𝑗

(𝐴𝑖, 𝑗 − 𝐵 𝑓 (𝑖) , 𝑓 ( 𝑗 ) )2.



Theory 28

Expanding the square gives:∑︁
𝑖, 𝑗

𝐴2
𝑖, 𝑗 − 2𝐴𝑖, 𝑗𝐵 𝑓 (𝑖) , 𝑓 ( 𝑗 ) + 𝐵2

𝑓 (𝑖) , 𝑓 ( 𝑗 ) .

The terms
∑
𝐴2
𝑖, 𝑗

and
∑
𝐵2

𝑓 (𝑖) , 𝑓 ( 𝑗 ) are independent of 𝑓 (the former is fixed, the latter

is a permutation of a fixed matrix), so the optimization reduces to:

max
𝑓

∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗𝐵 𝑓 (𝑖) , 𝑓 ( 𝑗 ) ,

which is the standard form of the Quadratic Assignment Decision Problem. Note,

max 𝑓 is a consequence of the sum being subtracted from the constants, thus we are

still minimizing the total distance.

Now we note that when 𝐴 and 𝐵 are in 𝑆 = {0, 1}𝑛×𝑛 , the ℓ1 and ℓ2 norms are

identical. We also note that this binary domain would constitute a special instance of

QAP, know as 0-1 Max-QAP, and is NP-Hard [29]. Thus solving 𝛿-DBVM(𝑆), on the

binary domain, is equivalent to solving 0-1 Max-QAP, and thus NP-Hard. ✓

( =⇒ NP-Membership) Given any 𝑓 , we can evaluate the cost of the allocation in

O(𝑛2). ✓

A concern with Theorem 4.6, might be the matrices containing certain patterns that

might lead to an easier solution, though this proof concerns itself with the worst-case

and thus this possibility of this problem being easier in practice is not issue. For this

problem such patterns seem unlikely to be of much help. We show one example to give

an intuition for this.

Take the case in which all voters hold one of 2 opinions, thus we can split them into two

groups of sizes 𝑛, 𝑚. Then the mapping algorithm effectively requires finding a partition

in the graph, that results in two sub-graphs with exactly 𝑛 and 𝑚 nodes each. This is the

size-constrained graph partitioning problem, which is NP-Hard.

Thus, given that even under such a strong assumption the problem remains computa-

tionally difficult, we suspect that patterns in the data are unlikely to allow for easier

exact solutions. This does leave room for approximation algorithms, we do not present

an overview of these, however under our constraint of one of the matrices satisfying the

triangle inequality, namely the voter distance matrix. There exists a 2𝑒
𝑒−1 -approximation

algorithm [29].

Despite these negative results, we attempted to enlist the help of a QAP-solver [37] to

find (approximate) solutions, using the Fast Approximate QAP Algorithm [38]. Though,
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we find the solver does not consistently find better solutions than random assignment,

and is unable to handle large enough instances for the experiments presented in the

following chapters.



CHAPTER 5

METHODS

This section presents our experimental methodology in three parts. First, we replicate

the preference-based deliberation model of Rad and Roy [32] to establish baseline mea-

surements. Second, we develop and validate the adapted DeGroot model using data

from the AMERICA IN ONE ROOM experiment. Finally, we apply this validated model to

generate synthetic preference profiles and analyze their structural properties.

All experiments are implemented using OCaml and Python. Data sources and ethical

considerations are detailed in Appendix A, all code can be found at https://github.

com/amirsahrani/master_thesis.

5.1 Replication of Rad and Roy

We implement the model as described in Section 3.3. Agents are limited to strict pref-

erences over all candidates. All experiments are done with 3 candidates, and 51 voters.

The number of voters is chosen to be an odd number to prevent perfect ties. Each voter

receives a random strict preference, created by permuting the candidates. All voters

share the same bias factor. The order of deliberation is decided randomly, by shuffling

the voters. Bias is varied between 0.45 and 0.99 (exclusive) in steps of 0.1, for each bias

factor we run 100 simulations, for a total of 5400 simulations.

We measure evaluations relating to strict preferences, namely the proportion of cyclic

profiles, the number of unique profiles and the proximity to single-peakedness by voter

deletion (PtS-V), all as also reported by Rad and Roy [32].

Due to the computational complexity of the DP-metric, as well as the calculation of

PtS-V, a larger number of candidates is computationally infeasible. Specifically, PtS-V is

30
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NP-complete [16], though it allows for a 2-approximation. We use the method based on

an ILP solver, as implemented in PrefTools [1].

5.2 Adapted DeGroot

We use the adapted DeGroot model as laid out in Section 4.1 to capture deliberation

dynamics. This model requires realistic trust matrices, we propose three mechanisms

through which we can construct these.

Knowledge. We consider knowledge as a factor that can influence both the trust a voter

places in others and the confidence they have in their own opinion. Let 𝒌 denote a

vector, where each 𝑘𝑖 represents a knowledge score for voter 𝑖. This score may inform

a voter’s bias towards their own opinion, under the assumption that greater knowledge

increases confidence.

There are two plausible interpretations of how knowledge affects self-bias. On one

hand, more knowledgeable voters may be more confident and thus less susceptible to

influence. On the other hand, increased knowledge might make voters more aware of

the limits of their understanding—capturing the essence of the Dunning-Kruger effect,

where individuals with limited knowledge fail to recognize their own ignorance. How-

ever, in the context of direct deliberation, we argue that the latter interpretation is less

realistic: ideally, as deliberation progresses voters are exposed to new information and

opposing viewpoints, making them more aware of the knowledge boundaries of their

peers as well as their own. Thereby allowing voters to place more weight on voters

more knowledgeable than them.

Regarding trust in others, we follow a similar line of reasoning: voters are more likely

to trust peers who exhibit higher levels of knowledge. We assume that expertise be-

comes apparent during discussion, leading to increased trust in more knowledgeable

individuals

Similarity. A voter might trust people more if they are similar to them, in this work

we take similarity to mean a similarity in substantive opinion. It is however not hard to

conceive of similarity influence trust in other ways such as social status. We calculate the

similarity as the ℓ1-distance between two voters’ opinions, normalized by the maximal

distance between two voters in their deliberative group.

Ego. Finally, a voter may place greater weight on her own opinion if she is highly trusted

by others. This we calculate as the sum of incoming edges in the trust matrix.

Finally, we allow for a bias factor, similar to Rad and Roy, in order to directly affect the

self-loop in the trust matrix.
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Selecting among these mechanisms is ultimately an empirical question, which we ex-

plore in Chapter 6.

Given each notion of trust, we define the full model using matrix operations, including

elementwise (Hadamard) products. Hadamard products are entry wise multiplications

of matrices. First, we define 𝑇out as follows,

𝑇out = 𝐴 ⊙ 𝐾 ⊙ 𝑆 (5.1)

Here 𝐴 is the adjacency matrix of shape 𝑛 × 𝑛, without self loops. 𝐾 is the matrix of

knowledge scores of shape 𝑛×𝑛 with each row being the vector of knowledge scores 𝒌𝑇 ,

such that each 𝐾𝑖 𝑗 = 𝒌 𝑗 . 𝑆 is the similarity matrix, where 𝑆𝑖 𝑗 = 1 − 𝑑𝑖 𝑗 , and 𝑑𝑖 𝑗 is the

normalized ℓ1 distance between voters 𝑖 and 𝑗 ’s opinions. The normalization ensures

the maximum distance is 1, so that 𝑆𝑖 𝑗 ∈ [0, 1].

Next, we compute the vector 𝑇in, which represents each voter’s internal (self-)trust or

bias:

𝑇in = (𝑇out𝒃) ⊙ 𝒌 ⊙ 𝒆 (5.2)

Here 𝒃 is a vector of length 𝑛 containing the bias factor in each entry, and 𝑇out𝑏 is a

standard matrix-vector product yielding a column vector that captures the total external

influence received, scaled by the voter’s bias. 𝒌 is the column vector of knowledge

scores, and 𝒆 is the ego vector, computed as 𝒆 = 𝑇⊤out1, where 1 is the all-ones vector.

This represents the total trust each voter receives from others

Finally, we construct the full trust matrix 𝑇 by combining 𝑇out with the diagonal matrix

formed from 𝑇in, and normalize each row so that trust weights sum to 1:

𝑇 = norm (diag(𝑇in) + 𝑇out) (5.3)

Here + denotes element-wise addition, and norm normalizes the rows of the resulting

matrix so that
∑

𝑗 𝑇𝑖 𝑗 = 1 for all 𝑖.

Once we have the trust matrix 𝑇 , we model the evolution of both substantive and meta-

opinions over 𝑡 time steps as:

𝑆𝑡𝑖 = 𝑇
𝑡𝑆 (0) (5.4)
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Σ𝑡
𝑖 = 𝑇

𝑡Σ (0) (5.5)

Here equation 5.4 captures the final support of voter 𝑖 after 𝑡 times steps, and equation

5.5, captures how they estimate the candidates’ support.

In this model, we make the simplifying assumption that trust remains static over time.

While this is likely an unrealistic assumption, the absence of data on trust dynamics

during deliberation prevents us from empirically modeling its evolution. Although we

refrain from speculating in detail on how this assumption could affect the general con-

clusions, we note it might affect both the rate of convergence, and the equilibrium

reached.

Given this formulation, we define an instance of our model through shaping the matri-

ces, such as shown in example Example 5.

EXAMPLE 5: DeGroot deliberation Instance

Consider a setting with three voters. Let us define the following matrices:

𝐴 =


0 1 1

1 0 1

1 1 0

 𝐾 =


0.5 1 2

0.5 1 2

0.5 1 2

 𝑆 =


0 0.5 1

0.5 0 1

1 1 0

 (5.6)

Note that the adjacency matrix 𝐴 has no self loops, 𝐾 has repeating rows, and 𝑆 is

symmetric, as the similarity of voter 𝑖 to voter 𝑗 must be the same as the other way

round.

Now suppose we want to create a trust matrix 𝑇 , that uses knowledge for the outgoing

trust, but not the similarity. Uses a constant bias factor of 2, and Ego-based trust, but

not self-knowledge. To achieve this, we redefine matrix 𝑆 as follows, noting that 𝐴

handles the self-loops,

𝑆 =


1 1 1

1 1 1

1 1 1

 (5.7)

Taking the element-wise product of these matrices yields:
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𝑇out =


0 1 2

0.5 0 2

0.5 1 0


Next, we compute 𝑇in:

𝑇in =


6

5

3

 ⊙

1

2

4

 =


6

10

12


Here the first vector is the result of each row sum of 𝑇out by the bias factor (2), and

the second vector is the ego vector, i.e., the sum of the columns in 𝑇out.

The trust matrix before normalization is then:
6 1 2

0.5 10 2

0.5 1 12


Which we then normalize to get:

𝑇 =


2
3

1
9

2
9

1
25

20
25

4
25

1
27

2
27

24
27


5.3 Model Validation

We split the experiments on the adapted DeGroot model into two parts. Firstly, we aim

to assess the validity of the model. We use data from the AMERICA IN ONE ROOM ex-

periment, focusing on the deliberation group. The control group in this data set shows

no significant difference, thus the only sensible trust matrix is the identity matrix. This

dataset does not provide full preference rankings over the candidates, instead provides

data on voters’ opinions on 6 different topics of political discussion, such as climate

change and immigration. This data provides knowledge scores for each voter as mea-

sured by a set of seven questions relating to governmental institutions. We construct the

knowledge scores as the fraction of correct answers. Using these opinions, we assess the

validity of the model insofar as it is able to accurately predict the final opinion of voters.

This we measure for each voter, as well as for binned groups of voters with similar opin-

ions. The latter measurement replicating the assessment by Fishkin et al. [17], where

voters are placed in fixed size bins such that each bin contains voters with similar initial

PBS.
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We run 5000 simulations, randomizing the independent variables laid out in Section 5.3,

excluding Candidates, and Candidate Generator. We then use an ANOVA to test for

the configuration of trust matrices that minimizes the absolute errors in predicted policy

based-ideology score. Since the original data provides group numbers for the partici-

pants, we also experiment with replicating these groups as opposed to randomly group-

ing voters together. When using the original groups, the number of voters parameter

is ignored.

We acknowledge that using the same dataset for both parameter estimation and valida-

tion may lead to overfitting. This represents a limitation imposed by data availability, as

the AMERICA IN ONE ROOM experiment is the only large-scale deliberation dataset with

the necessary pre- / post-measurements/post measurements and knowledge scores to

which we had access.

Finally, we use sensitivity analysis to investigate which parameters have the strongest

effect on the variance of the model’s prediction error. Using Sobol indices and a sample

size of 4096, we use the same ranges during the validation and sensitivity analysis.

We calculate the first, second, and total order effects. The first order indices refer to

their direct effects on the variance of the model, while all other parameters are varied

randomly. The second and total order capture this for pairwise interactions of a variable

and for all first- and higher-order interactions of a variable, respectively.

5.4 Introducing Meta-Agreement

To incorporate meta-agreement on alternatives, we expand the model by introducing

simulated candidates. Candidates are generated in two ways: either by copying the

opinion vector of a single randomly selected voter or by averaging the opinions of ten

voters sampled with replacement. Each voter’s preference ranking over the simulated

candidates is then derived based on the ℓ1 distance between their own opinion vector

and that of each candidate.

We conduct 1,000 randomized simulations and evaluate the outcomes using the same

metrics as in the Rad and Roy replication. These include the proportion of cyclic profiles,

the presence of a Condorcet winner, the number of unique preference profiles, and the

proximity to single-peakedness via voter deletion (PtS-V). Additionally, we compute the

frequency of Condorcet winners and the proximity to single-peakedness via candidate

deletion (PtS-C). PtS-C is an alternative view to PtS-V, focussing on ill-behaved candi-

dates, instead of voters. The frequency of Condorcet winners, when more than three

candidates are present, offers insight into the extent of agreement on a single best alter-

native, even when the majority graph contains cycles. For example, it is possible for one
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Parameter Description Values

Number of Voters The number of voters in the simu-
lation.

9, 13, . . . ,29*

Number of Candidates The number of candidates to be
voted on.

3, 4, 5, 6, 7

Candidate Generator The method used to generate can-
didates.

Sample, single random voter

Bias The bias all voters have towards
their own opinion.

0.8, 1.0, . . . , 2.8*

Time steps The number of deliberation “steps”
the voters undergo.

1, 2, . . . , 20

Group Use the original groups. True/False†

Similarity Distribute trust based on similarity. True/False*
Knowledge Distribute trust based on knowl-

edge.
True/False*

Ego Scale voters’ bias according to the
trust other people have in them

True/False*

Self-Knowledge Scale voters’ bias according to their
knowledge

True/False*

TABLE 5.1: The parameters of the adapted DeGroot model and their values. Parameters
marked with an asterisk (*) are randomized during sensitivity analysis. † parameter set

to False during sensitivity analysis.

candidate to be consistently ranked first by a majority of voters, while the remaining

candidates form a Condorcet cycle among themselves.

While PtS-C can be computed in O(|𝑉 | · |𝐶 |3) time [31], we rely on the implementation

provided by the PrefTools library [1], which uses a slower O(|𝑉 | · |𝐶 |5) algorithm based

on the method from Erdélyi et al. [16].

In the following chapter, we analyze the behavior of these models under both empirical

data and controlled simulations, examining their capacity to replicate realistic delibera-

tive outcomes and foster structural agreement.



CHAPTER 6

RESULTS

We first present a full replication and extension of the work by Rad and Roy [32]. Then

we present the simulations based on our model of meta-deliberation, as well as the

results of the sensitivity analysis on both models.

6.1 Replication

We successfully replicate the results found by Rad and Roy [32]. Figure 6.1 shows for

biases less than 0.73, all metrics result in acyclic preferences. We also replicate the

behavior of the KS metric, where biases in the range of 0.73-0.85, show that even ini-

tially acyclic profiles can become cyclic. This is further illustrated in Figure 6.2, showing

that within this range we always observe 3 unique preferences for the KS metric, while

DP and CS always have 6 unique preferences, thereby representing all possible prefer-

ences. Finally, the proximity to single-peakedness shows a slightly more positive note

for the KS metric, showing that while the DP and CS bottom out to the minimum prox-

imity to single-peakedness, KS stays relatively high. However, this should be interpreted

cautiously, as it likely reflects the smaller number of unique preferences, and thus the

number of voters that need to be removed is at most 1/3.

Through these results, we observe that while the original model does show increase in

the proximity to single-peakedness (PtS-V) and discourages cyclic profiles, its outcomes

are highly sensitive to both voter bias and the chosen distance metric. In particular,

the instability observed with the KS metric across certain bias ranges raises concerns

about the robustness and external validity of the approach. Moreover, the model lacks

a mechanism for higher-order disagreement or reflection—there is no “meta” level at
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FIGURE 6.1: The proportion of
cyclic profiles remaining, 0 indi-
cating that no cyclic profiles were

present after deliberation.
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FIGURE 6.2: Number of unique
preferences at the final step of de-

liberation.
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FIGURE 6.3: Proximity to single-
peakedness after deliberation.
Proximity to single-peakedness as

defined in Section 3.3.

which agents evaluate the structure of their preferences. This limitation motivates the

development of our own model, which explicitly incorporates meta-deliberation and

trust dynamics to better capture the complexities of real-world opinion formation.
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6.2 DeGroot Model

The model is calibrated using the data from the AMERICA IN ONE ROOM experiment,

which was used to construct the support vectors 𝑺 (each voter’s vector of policy opin-

ions), where each element in 𝑆𝑖 corresponds to one response in the questionnaire. We

follow the original paper, focussing on the 26 most polarizing questions, which we then

use to calculate the policy-based ideology score (PBS) as the average these polarizing

questions. Low PBS corresponds to more liberal answers, and high PBS indicates more

conservative answers.

We remove all participants with missing responses to any pre- or post-deliberation mea-

surements, retaining only participants with complete pre- and post-deliberation data. As

a result, only 247 out of the original 523 opinions remain after this selection. This re-

moves a large fraction of participants. However, it limits the number of assumptions we

have to make on the opinions of participants. Interpolation of the missing data would

likely artificially inflate the accuracy of the model, this might be further exaggerated by

the fact that we need to infer preferences over (artificial) candidates.

The support vectors 𝑆𝑖 correspond to the participants’ reported opinions, based on mea-

sured by several policy questions rated from 0 to 10 (inclusive). Each voter’s estimated

support matrix Σ is generated by adding normally distributed noise(𝜇 = 0, 𝜎 = 1.37)

to the candidates’ true opinions. Ensuring the model does not systematically favor can-

didates with higher or lower average scores, as otherwise voters would on average be

over or underestimating candidates’ support. The standard deviation is chosen to match

voter PBS distribution before deliberation. The opinions of the candidates are generated

as mentioned in Section 5.4, namely by copying the opinion of a voter at random, or by

sampling ten voters with replacement.

To generate a deliberation group, we opt for two approaches. Either using the original

deliberation groups, selecting a group at random and using the participants from that

group. Given the restriction of voters with complete data these groups will tend to

be smaller than in the original study, where these groups averaged 13 voters, in our

subsection the average is 7. Or we generate new groups by picking 𝑛 voters uniformly

at random without replacement.

To evaluate model performance, we predict each voter’s post-deliberation PBS and com-

pare it to the observed data. Additionally, we group voters into ten bins based on their

initial PBS and compare the average predicted PBS within each bin to the true bin aver-

age. This approach effectively models deliberation the substantive level and thus does

not yet incorporate the possibility of meta-agreement. However, it allows for the evalua-

tion of the model without assumptions on how to infer the final preferences of the voters,
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or the opinions of candidates. After this assessment, we investigate the convergence of

the model, as well as its sensitivity to the choice of parameters.

Finally, we extend the model to incorporate meta-deliberation through deliberation on

the estimated support matrices. Assessing its effect on voters’ final preferences, using

the metrics introduced in Section 5.4.

6.2.1 Policy-Based Ideology Scores

We first proceed with analyzing the performance of the DeGroot model with respect to

substantive agreement. Figure 6.4 shows the PBS of both the deliberation and control

group, and the simulation results for both instances, here the results are averaged over

all tested configurations of the model. The trust matrix for the control group is gener-

ated using the network of citations in physics [34], and is sampled down to the size of

the number of voters using the TIES sampling technique [2]1. As expected the model has

high mean absolute error (MAE) when predicting the post deliberation PBS of the con-

trol group, as there was no significant change for control group members in the original

data. Within the deliberation group, a voter’s initial PBS remains a strong indicator of

their final PBS. We observe that the models predictions get more accurate after the first

time step, with prediction errors increasing over time. This is because the model causes

voters to converge too strongly, thereby eliminating most extreme opinions, contrary to

the real data. The implications of this depend on the nature of long term deliberation.

If, as suggested by Elster [15], deliberation is able to reach full consensus, the model

might offer a plausible approximation of this process. However, if full consensus is not

typically reached—as is precisely the motivation for incorporating meta-agreement into

the model—then the DeGroot model should be seen as overly simplistic in its assump-

tion that individuals converge toward a weighted average of the opinions presented to

them.

Figure 6.5 depicts the change in PBS within the deliberation group. In the original data,

most changes occur among participants with high initial PBS, who tend to moderate

their views. The model, by contrast, predicts the most change among those with low

PBS.

One possible explanation for this discrepancy is the correlation between PBS and politi-

cal knowledge. As shown by Fishkin et al. [17], voters with more extreme PBS also tend

to be more knowledgeable. Our filtered dataset supports this, showing a weak negative

1To address the issue of assigning voters to nodes in the final sampled graph (see Chapter 4), we used a
Fast Approximate Quadratic Assignment Problem solver [38]. However, this approach did not consistently
outperform random initialization.
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FIGURE 6.4: PBS, purple indicating the PBS after deliberation in the original data,
green indicates the results of the simulation in that time step. Large dots indicate the

binned data, smaller dots indicate individual voters.

correlation of -0.05 (𝑝 < 0.05), Figure B.1 in Appendix B shows the distribution of po-

litical knowledge across different PBS ranges. Since political knowledge in our sample

is skewed toward voters with high PBS, incorporating knowledge-based trust into the

model amplifies their influence, resulting in larger prediction errors.

FIGURE 6.5: Change in PBS, relative to the original, pre deliberation, measurement.
The control is omitted as there was no significant change.

We note that these positive results appear only when the voters are grouped by their orig-

inal PBS during the initial 3-4 time steps, thereby giving the model reasonable predictive

power over a population of voters. Figure 6.6 shows the progression of errors over time

when the error is calculated on a per-individual basis (left), and binned (right). We find

the model does not predict the change per individual well, with the original score at
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t=0 being a better predictor of an individual’s final PBS than the model’s output dur-

ing any subsequent time steps. Notably, using the ego-based trust, the model makes

smaller prediction errors. When we look at the predictions binned by initial PBS, the

model seems to be doing a lot better, again with ego-based trust resulting in the lowest

error. Interestingly after the first time step, knowledge-based trust results in the lowest

prediction error, after this step ego-based trust outperforms all other kinds of trust.

Furthermore, Figure 6.6 shows that the model predicts individual PBS changes it has

higher MAE when knowledge is included in the trust calculation as opposed to Ego, and

is equal to similarity. This suggests that political knowledge, at least as measured in

this dataset, is a poor predictor of persuasiveness. As he knowledge questions assess

factual knowledge of the U.S. government, such as knowing which party holds a Senate

majority, knowledge may not correlate well with persuasiveness on specific policy issues

such as immigration or the economy.

FIGURE 6.6: (Left) Mean absolute prediction error over time for different trust mech-
anisms, with 95% confidence intervals at each time step. (Right) Mean absolute error
binned by voters’ initial PBS score. Binning reveals how predictive performance varies

across the ideological spectrum.

Further, looking into the change in PBS, Figure 6.7 divides the change in PBS up into the

change on each topic measured. The model predicts the change in PBS for healthcare

very well across different trust generation methods, as well as changing the PBS into the

right direction for the economy and immigration, still the model predicts roughly half

as much change in PBS for immigration for any of the trust generation methods. For

the environment and foreign policy, the model predicted an increase in PBS on average,

while in reality people decreased their PBS. Comparing different trust generation meth-

ods, we see that ego and similarity are quite similar on most topics, but specifically on

the economy ego seems to be very accurate, while similarity does not seem to lead to

significant change.
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FIGURE 6.7: Change in PBS per topic with bias random between 0.2 and 0.4. This
figure compares the observed change in PBS across policy topics (e.g., healthcare,
immigration), showing the average change for three trust mechanisms: ego-based,

similarity-based, and the model using all trust signals combined.

Figure 6.8 shows the relation between the bias factor and the PBS, showing that the bias

does not improve the model’s predictive power. As one might expect, bias is “slowing

down” the model. Because of this, the model is slower to diverge away from the true

opinions.

We suspect ego improves predictive accuracy for two reasons. First, by assigning individual-

specific biases, the model better reflects heterogeneous deliberative behavior. Second,

increased self-bias slows down convergence, preventing the model from over-correcting.

6.2.2 Convergence of Trust Matrices

From Chapter 4, we have seen that in the limit some matrices are convergent, while

some are not, in particular if the matrix is aperiodic, it is convergent. As we model the

deliberation group as having fully connected matrices, with self-loops, the matrices are

aperiodic, and thus convergent. We look at the distance between the estimated support

matrix, and the true support matrix, to get a sense of the rate of convergence. The

distance is defined as the ℓ1 norm.

In Figure 6.9, all configurations converge at a similar rate, slowing down the rate of

change around t = 15. Since using the original groups leads to generally smaller groups,
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FIGURE 6.8: Mean absolute prediction error as a function of bias and time using ego
based trust. The heatmap shows how the PBS error evolves over time for different bias
levels. Higher bias slows the rate of opinion change, and thereby prevents the opinions

from becoming homogeneous.

FIGURE 6.9: Convergence of trust matrices, as measured by the ℓ1-norm between the
trust matrix at the start and trust matrix at the current time step.

the mean absolute difference in the matrix is smaller. When using knowledge-based trust

there is a lower rate of convergence

6.3 Sensitivity Analysis

We perform sensitivity analysis on the predicted PBS of the model. We do not use the

original groups, as this allows us to vary the number of voters. Figure 6.10 shows the

sensitivity indices. The first order indices show that the number of voters is clearly the

biggest factor in the variance of the model. As expected, the bias does not directly con-

tribute to the variance in the model. Knowledge informed trust and self knowledge both

are significantly impacting the variance of the model. The second order indices show

number of voters interacts with knowledge, self knowledge, and similarity, contributing a

large portion of their explained total variance induced by the number of voters. There is
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also an interaction between ego and similarity and self knowledge. As for the Total order

indices, variables contribute significantly to the variance in the model.

We argue the non-significant first order indices are a result of these parameters not

directly incorporating new information into the model, and thus on average they do

not affect on the outcome. When these parameters are used in combination parameters

that do introduce new information into the model they start to significantly alter the

outcome of the model. As partly supported by the second order sensitivity indices

FIGURE 6.10: Sensitivity indices of parameters influencing PBS prediction error. Aster-
isks in the second-order panel denote statistically significant interactions.

6.4 Adding Meta-Agreement

FIGURE 6.11: Proportion of cyclic profiles in the DeGroot model after adding meta-
agreement. Lower values indicate more coherent collective preferences.

Firstly, when comparing different voter generation mechanisms, we find that generating

a candidate by copying the opinion of a single voter performs best—both in minimiz-

ing the number of cyclic profiles and in maximizing the frequency with which a Con-

dorcet winner exists. Though this result may seem unintuitive, we suspect the reason is

that pre-deliberation opinions were relatively polarized. As a consequence, constructing

candidates as averages of 10 voters tends to produce alternatives that are too similar,

making it difficult for anyone to stand out.
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In contrast, when copying a single voter’s opinion, that candidate is more likely to fall

near a large cluster of similar voters, making that candidate closer to the majority. In

such cases, that candidate is more likely to become a Condorcet winner. Put simply,

averaged candidates tend to represent moderate positions, leading to greater voter in-

difference between them. In these situations, small errors in perceived support can

have disproportionately large effects. Meanwhile, candidates based on a single voter’s

opinion, especially in a polarized society, are more likely to be distinct and strongly

preferred.

Looking at the evaluation metrics used in the model, we observe a pattern similar to that

found in the substantive agreement analysis. The simulation initially starts far from the

true scores, gradually moves toward them, overshoots, and finally begins to converge.

FIGURE 6.12: Proximity to single-peakedness after deliberation via candidate deletion
(left) and voter deletion (right). The black line is a fitted sigmoid curve

Figure 6.12 shows similar dynamics across simulation time for both notions of prox-

imity to single-peakedness. Although candidate deletion and voter deletion represent

two fundamentally different approaches to measuring this property, they yield a con-

sistent conclusion: voters rapidly become more single-peaked early in the simulation,

after which the rate of change slows and eventually plateaus. This behavior is well

captured by a sigmoid curve, with an 𝑅2 of 0.997 and 0.993 for the PtS-V and PtS-C

respectively. The diminishing rate of change corresponds to the trust matrix stabilizing

at its convergent state.



CHAPTER 7

DISCUSSION

7.1 Conclusion

The main goal of the thesis was to get a deeper understanding of deliberation and its

effect on preference profiles. To this end we consulted the literature (Chapter 3) laying

out various points of view on the goal of deliberation. From this we follow Cohen’s [9]

four tenants of deliberation; deliberation should be free, reasoned, equal, and it should

aim to reach consensus. In Chapter 4 we show that the deliberative procedure posited by

Rad and Roy [32] cannot be strategyproof under classic notions of strategyproofness as

well as novel notion of strategyproofness we define. We use this to add one more tenant

to Cohen’s four, namely honesty.

We then set out to mechanically understand deliberation. For this, we introduced the

DeGroot learning model, and adapted it to deliberation over opinions. We showed NP-

hardness on the 𝛿-DBVM(S) problem, and concluded that using de DeGroot model to

model sparse graphs is computationally difficult, if one wants to assign voters to nodes

based on some distance metrics.

In Chapter 6 replicated the results by Rad and Roy [32], and we use our adapted De-

Groot model to test its predictive power on opinions using the AMERICA IN ONE ROOM

dataset [17]. We conclude that though in the initial time steps the model can do well on

the population level, the prediction on the change in opinion for individuals was poor.

We also show that this is at least partly explained by the fact that the DeGroot model

treats all policies equally. The data showed that some topics had large shifts in opinions,

while others showed less. The DeGroot model was unable to capture this, and in some

cases change the opinions in the opposite direction entirely.

47
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Using sensitivity analysis, we showed that all parameters affected the final predictions,

however, some parameters had non-significant first- and second-order effects. We argue

that this is a result of these parameters not introducing new information. As a result,

they can only affect the variance of the model by modulating the dynamics induced by

the parameters with significant first-order effects.

Finally, we looked at the preference profiles which we simulated based on the opinions

from both the data and the simulations. We show, that similar to the population level

predictions for the PBS, the profiles based on the simulated and true opinions start

looking more similar during the first steps in the simulation. However, after this the

model converge too strongly and the profiles of the simulated opinions become too

“nice”, in the sense that they get closer to being single-peaked and are acyclic more

frequently.

These results led us to conclude that the DeGroot learning model was overly simplistic

and therefore was unable to adequately explain individual opinion change. As a result,

it is a bad approximation of what happens during human deliberation. The patterns

shown by the model are also in contradiction to known results in social psychology,

where small extreme groups tend to become more extreme [28].

7.2 Discussion

We first present some limitations of these results. We can broadly put these into three

categories.

Firstly, given the lack of a complete data source combining pre- and post-deliberation

opinions and preference rankings as well as the opinions of these alternatives, we have

had to make many assumptions on both the positions represented by the candidates, and

well as the method by which voters generate their preference rankings. In terms of gen-

erating candidates, our approach is simple, and only assumes that candidates represent

the opinions held by the voters. This is however clearly a less rich process than that by

which real-world candidates are selected, where these might bring in new opinions or

have traits that are desirable, such as being good leaders or well-spoken. In terms of vot-

ers creating a ranking over alternatives, we have gone with the assumptions that this is

done strictly through distance in opinions, similar to what a political compass test might

do. In reality, however, voters might be using different and multiple heuristics to order

the candidates. Indeed, if there are numerous candidates, the ranking might not even be

complete. Therefore, distance-based measures will likely diverge from heuristics, such

as pre-selecting some list of candidates deemed acceptable.
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Secondly, there are some methodological assumptions we made. These mainly relate to

the generation of the trust matrices. For all Knowledge, Self-Knowledge, and Similarity

the scores were normalized to be between 0 and 1, while the Ego score was not nor-

malized. This results in an asymmetry that allows Ego to increase the values in the trust

matrix, where the other parameters could not. This decision was made as we found no

clear ceiling with respect to which we could normalize the Ego score. As mentioned in

Chapter 6, this might explain why Ego resulted in the lowest error on the Population

level.

The same trust matrix was used for substantive and meta deliberation. Though from a

modeling perspective this is a pragmatic solution. In reality, this assumption seems too

strong. This assumption forces someone to be equally willing to change their opinion as

they are to change their perception of a candidate’s opinion, where, at least intuitively,

one might expect more willingness on the latter towards people with dissimilar opinions.

Apart from these limitations in generating the trust matrices, we also note the noise

added to the estimates of candidates’ opinions is normally distributed. Though this was

done to introduce voter uncertainty, over which they could then deliberate, normally

distributed noise seems unlikely, especially for voters that hold more extreme positions.

Here we might expect that the noise is dependent on the candidates opinions, where

candidates that are more similar in opinion to the voters, will be more accurately esti-

mated than dissimilar candidates. For these dissimilar candidates, it might then also be

true that this noise is skewed towards the opposite extreme w.r.t. the voter’s opinion.

While we opted for the DeGroot model as a more accurate representation of human

belief updating than full Bayesian updating, the DeGroot model does have some inherent

limitations. Firstly, it does not take into account why people hold certain beliefs, nor

does it constrain what kinds of beliefs a voter can hold at the same time. To remedy this,

one might consider a framework such as abstract argumentation theory [13], as this is

able to model the arguments with the deliberative groups. Though, this is theoretically

nice, as it allows for formal description of why opinions and preferences are held, not

just their descriptions. From a simulation perspective, such a framework introduces

major validity questions. Firstly the framework requires a map on the relation of all

arguments, for this one does not only need qualitative data, i.e. reported arguments by

participants, but also a method of reliably and accurately transforming these qualitative

reports to argumentative graphs. Secondly, the abstract argumentation framework does

not pose an updating mechanism, thus the method through which participants would

update their beliefs using this framework is unclear. Secondly, it limits voter’s belief

updates to linear transformations.



Discussion 50

Finally, we address some limitations on the real-world implications of these results. The

negative results surrounding strategyproofness in Chapter 4 might be less of an issue

in human deliberation, as the dishonest participant could be less convincing defending

their dishonest opinion than their true opinion. As a result, they might have less total

influence than if they had defended their true opinion.

In terms of modeling deliberation, we have now focussed on variables that can clearly

be measured. While this might paint a good picture of the quantitative aspects of de-

liberation, in practice deliberation in humans come with rich interactions affecting their

judgment and willingness to listen among other things. If we hope to get an accurate

mechanistic model of deliberation, these qualitative aspects of deliberation need to be

studied.

7.3 Future work

Based on the limitations of this study, and the literature, we present some areas for

future work.

Given the weak performance of the model, a better computational model is needed to

understand deliberation and inform the design of deliberative interventions. We propose

some extensions to the model, which might better capture human dynamics. Most im-

portantly, it needs to be able to show non-linear affects, and be informed by qualitative

descriptions of deliberation. One main improvement of the DeGroot model specifically

could be to introduce dynamic trust matrices. When humans deliberate, the amount of

trust placed in each person is likely not fixed over time. This can be addressed by dy-

namic trust matrices that update according to voter’s familiarity with other voters, and

possibly other factors.

Another way in which the trust matrices can be further refined is through introducing

topic-dependent trust. As some topics might be more hotly debated, for example as a

result of some recent event. These voters could generally be more informed on these

topics, and less willing to talk about other topics. This is related to the notion of Salience

as described by List et al. [26], stating that topics with high salience benefit less from

deliberation, as participants have likely received more information on this topic.

Furthermore, any good model will need proper data, as such a study similar to that

of Fishkin et al. [17] is needed, where voters are asked not only for their opinion but

also their preference order. This could also be a great opportunity to gather qualitative

insights into deliberation and the social dynamics thereof. This would also allow for

testing participant’s knowledge on topics directly, hopefully giving stronger indications

of voter’s ability to persuade and defend on specific topics.
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ADDITIONAL MATERIAL

B.1 Extended Proof

We present the following extension to the proof of Proposition 4.3, specifically for the

case where the CS distance is used.

Proof . As in the KS and DP cases, we construct profiles 𝑅1, 𝑅 𝑗 , and 𝑅′1 such that:

• DistCS(𝑅1, 𝑅 𝑗) = 2 for all 𝑗 ≠ 1,

• DistCS(𝑅1, 𝑅
′
1) = 2,

• DistCS(𝑅′1, 𝑅 𝑗) = 4.

Assume voter 1 has a bias of 1, and all other voters 𝑗 ≠ 1 have bias 0.5.

Let the profiles be defined as follows:

𝑅1 = 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ · · · ≻ 𝑚,

𝑅 𝑗 = 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ · · · ≻ 𝑚,

𝑅′1 = 𝑎 ≻ 𝑐 ≻ 𝑏 ≻ · · · ≻ 𝑚.

Observe that 𝑅1 differs from both 𝑅 𝑗 and 𝑅′1 by a single adjacent transposition, and

hence the CS distance between them is 2:

DistCS(𝑅1, 𝑅 𝑗) = DistCS(𝑅1, 𝑅
′
1) = 2.
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To compute the CS distance between 𝑅′1 and 𝑅 𝑗 , consider the rankings of the top three

candidates:
Positions in 𝑅′1 : 𝑎 = 1, 𝑏 = 3, 𝑐 = 2,

Positions in 𝑅 𝑗 : 𝑎 = 2, 𝑏 = 1, 𝑐 = 3.

Then:

DistCS(𝑅′1, 𝑅 𝑗) = |1 − 2| + |3 − 1| + |2 − 3| = 1 + 2 + 1 = 4.

This satisfies the required conditions: the misreported preference 𝑅′1 increases the dis-

tance to other voters while remaining close to the voter’s true preference 𝑅1, making

strategic manipulation beneficial under this setup.
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B.2 Additional Figures

FIGURE B.1: The distribution of knowledge scores for different ranges of policy-based
ideology scores.
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